Show / Hide Table of Contents

Class GoogleCloudAiplatformV1FeatureViewIndexConfig

Configuration for vector indexing.

Inheritance
object
GoogleCloudAiplatformV1FeatureViewIndexConfig
Implements
IDirectResponseSchema
Inherited Members
object.Equals(object)
object.Equals(object, object)
object.GetHashCode()
object.GetType()
object.MemberwiseClone()
object.ReferenceEquals(object, object)
object.ToString()
Namespace: Google.Apis.Aiplatform.v1.Data
Assembly: Google.Apis.Aiplatform.v1.dll
Syntax
public class GoogleCloudAiplatformV1FeatureViewIndexConfig : IDirectResponseSchema

Properties

BruteForceConfig

Optional. Configuration options for using brute force search, which simply implements the standard linear search in the database for each query. It is primarily meant for benchmarking and to generate the ground truth for approximate search.

Declaration
[JsonProperty("bruteForceConfig")]
public virtual GoogleCloudAiplatformV1FeatureViewIndexConfigBruteForceConfig BruteForceConfig { get; set; }
Property Value
Type Description
GoogleCloudAiplatformV1FeatureViewIndexConfigBruteForceConfig

CrowdingColumn

Optional. Column of crowding. This column contains crowding attribute which is a constraint on a neighbor list produced by FeatureOnlineStoreService.SearchNearestEntities to diversify search results. If NearestNeighborQuery.per_crowding_attribute_neighbor_count is set to K in SearchNearestEntitiesRequest, it's guaranteed that no more than K entities of the same crowding attribute are returned in the response.

Declaration
[JsonProperty("crowdingColumn")]
public virtual string CrowdingColumn { get; set; }
Property Value
Type Description
string

DistanceMeasureType

Optional. The distance measure used in nearest neighbor search.

Declaration
[JsonProperty("distanceMeasureType")]
public virtual string DistanceMeasureType { get; set; }
Property Value
Type Description
string

ETag

The ETag of the item.

Declaration
public virtual string ETag { get; set; }
Property Value
Type Description
string

EmbeddingColumn

Optional. Column of embedding. This column contains the source data to create index for vector search. embedding_column must be set when using vector search.

Declaration
[JsonProperty("embeddingColumn")]
public virtual string EmbeddingColumn { get; set; }
Property Value
Type Description
string

EmbeddingDimension

Optional. The number of dimensions of the input embedding.

Declaration
[JsonProperty("embeddingDimension")]
public virtual int? EmbeddingDimension { get; set; }
Property Value
Type Description
int?

FilterColumns

Optional. Columns of features that're used to filter vector search results.

Declaration
[JsonProperty("filterColumns")]
public virtual IList<string> FilterColumns { get; set; }
Property Value
Type Description
IList<string>

TreeAhConfig

Optional. Configuration options for the tree-AH algorithm (Shallow tree + Asymmetric Hashing). Please refer to this paper for more details: https://arxiv.org/abs/1908.10396

Declaration
[JsonProperty("treeAhConfig")]
public virtual GoogleCloudAiplatformV1FeatureViewIndexConfigTreeAHConfig TreeAhConfig { get; set; }
Property Value
Type Description
GoogleCloudAiplatformV1FeatureViewIndexConfigTreeAHConfig

Implements

IDirectResponseSchema
In this article
Back to top Generated by DocFX