Class GoogleCloudAiplatformV1SchemaTrainingjobDefinitionWindowConfig
Config that contains the strategy used to generate sliding windows in time series training. A window is a series of rows that comprise the context up to the time of prediction, and the horizon following. The corresponding row for each window marks the start of the forecast horizon. Each window is used as an input example for training/evaluation.
Implements
Inherited Members
Namespace: Google.Apis.Aiplatform.v1.Data
Assembly: Google.Apis.Aiplatform.v1.dll
Syntax
public class GoogleCloudAiplatformV1SchemaTrainingjobDefinitionWindowConfig : IDirectResponseSchema
Properties
Column
Name of the column that should be used to generate sliding windows. The column should contain either booleans or string booleans; if the value of the row is True, generate a sliding window with the horizon starting at that row. The column will not be used as a feature in training.
Declaration
[JsonProperty("column")]
public virtual string Column { get; set; }
Property Value
Type | Description |
---|---|
string |
ETag
The ETag of the item.
Declaration
public virtual string ETag { get; set; }
Property Value
Type | Description |
---|---|
string |
MaxCount
Maximum number of windows that should be generated across all time series.
Declaration
[JsonProperty("maxCount")]
public virtual long? MaxCount { get; set; }
Property Value
Type | Description |
---|---|
long? |
StrideLength
Stride length used to generate input examples. Within one time series, every {$STRIDE_LENGTH} rows will be used to generate a sliding window.
Declaration
[JsonProperty("strideLength")]
public virtual long? StrideLength { get; set; }
Property Value
Type | Description |
---|---|
long? |