Class GoogleCloudAiplatformV1beta1ExplanationParameters
Parameters to configure explaining for Model's predictions.
Implements
Inherited Members
Namespace: Google.Apis.Aiplatform.v1beta1.Data
Assembly: Google.Apis.Aiplatform.v1beta1.dll
Syntax
public class GoogleCloudAiplatformV1beta1ExplanationParameters : IDirectResponseSchema
Properties
ETag
The ETag of the item.
Declaration
public virtual string ETag { get; set; }
Property Value
Type | Description |
---|---|
string |
Examples
Example-based explanations that returns the nearest neighbors from the provided dataset.
Declaration
[JsonProperty("examples")]
public virtual GoogleCloudAiplatformV1beta1Examples Examples { get; set; }
Property Value
Type | Description |
---|---|
GoogleCloudAiplatformV1beta1Examples |
IntegratedGradientsAttribution
An attribution method that computes Aumann-Shapley values taking advantage of the model's fully differentiable structure. Refer to this paper for more details: https://arxiv.org/abs/1703.01365
Declaration
[JsonProperty("integratedGradientsAttribution")]
public virtual GoogleCloudAiplatformV1beta1IntegratedGradientsAttribution IntegratedGradientsAttribution { get; set; }
Property Value
Type | Description |
---|---|
GoogleCloudAiplatformV1beta1IntegratedGradientsAttribution |
OutputIndices
If populated, only returns attributions that have output_index contained in output_indices. It must be an ndarray of integers, with the same shape of the output it's explaining. If not populated, returns attributions for top_k indices of outputs. If neither top_k nor output_indices is populated, returns the argmax index of the outputs. Only applicable to Models that predict multiple outputs (e,g, multi-class Models that predict multiple classes).
Declaration
[JsonProperty("outputIndices")]
public virtual IList<object> OutputIndices { get; set; }
Property Value
Type | Description |
---|---|
IList<object> |
SampledShapleyAttribution
An attribution method that approximates Shapley values for features that contribute to the label being predicted. A sampling strategy is used to approximate the value rather than considering all subsets of features. Refer to this paper for model details: https://arxiv.org/abs/1306.4265.
Declaration
[JsonProperty("sampledShapleyAttribution")]
public virtual GoogleCloudAiplatformV1beta1SampledShapleyAttribution SampledShapleyAttribution { get; set; }
Property Value
Type | Description |
---|---|
GoogleCloudAiplatformV1beta1SampledShapleyAttribution |
TopK
If populated, returns attributions for top K indices of outputs (defaults to 1). Only applies to Models that predicts more than one outputs (e,g, multi-class Models). When set to -1, returns explanations for all outputs.
Declaration
[JsonProperty("topK")]
public virtual int? TopK { get; set; }
Property Value
Type | Description |
---|---|
int? |
XraiAttribution
An attribution method that redistributes Integrated Gradients attribution to segmented regions, taking advantage of the model's fully differentiable structure. Refer to this paper for more details: https://arxiv.org/abs/1906.02825 XRAI currently performs better on natural images, like a picture of a house or an animal. If the images are taken in artificial environments, like a lab or manufacturing line, or from diagnostic equipment, like x-rays or quality-control cameras, use Integrated Gradients instead.
Declaration
[JsonProperty("xraiAttribution")]
public virtual GoogleCloudAiplatformV1beta1XraiAttribution XraiAttribution { get; set; }
Property Value
Type | Description |
---|---|
GoogleCloudAiplatformV1beta1XraiAttribution |