Class GoogleCloudAiplatformV1beta1ModelMonitoringSchema
The Model Monitoring Schema definition.
Implements
Inherited Members
Namespace: Google.Apis.Aiplatform.v1beta1.Data
Assembly: Google.Apis.Aiplatform.v1beta1.dll
Syntax
public class GoogleCloudAiplatformV1beta1ModelMonitoringSchema : IDirectResponseSchema
Properties
ETag
The ETag of the item.
Declaration
public virtual string ETag { get; set; }
Property Value
Type | Description |
---|---|
string |
FeatureFields
Feature names of the model. Vertex AI will try to match the features from your dataset as follows: * For 'csv' files, the header names are required, and we will extract the corresponding feature values when the header names align with the feature names. * For 'jsonl' files, we will extract the corresponding feature values if the key names match the feature names. Note: Nested features are not supported, so please ensure your features are flattened. Ensure the feature values are scalar or an array of scalars. * For 'bigquery' dataset, we will extract the corresponding feature values if the column names match the feature names. Note: The column type can be a scalar or an array of scalars. STRUCT or JSON types are not supported. You may use SQL queries to select or aggregate the relevant features from your original table. However, ensure that the 'schema' of the query results meets our requirements. * For the Vertex AI Endpoint Request Response Logging table or Vertex AI Batch Prediction Job results. If the instance_type is an array, ensure that the sequence in feature_fields matches the order of features in the prediction instance. We will match the feature with the array in the order specified in [feature_fields].
Declaration
[JsonProperty("featureFields")]
public virtual IList<GoogleCloudAiplatformV1beta1ModelMonitoringSchemaFieldSchema> FeatureFields { get; set; }
Property Value
Type | Description |
---|---|
IList<GoogleCloudAiplatformV1beta1ModelMonitoringSchemaFieldSchema> |
GroundTruthFields
Target /ground truth names of the model.
Declaration
[JsonProperty("groundTruthFields")]
public virtual IList<GoogleCloudAiplatformV1beta1ModelMonitoringSchemaFieldSchema> GroundTruthFields { get; set; }
Property Value
Type | Description |
---|---|
IList<GoogleCloudAiplatformV1beta1ModelMonitoringSchemaFieldSchema> |
PredictionFields
Prediction output names of the model. The requirements are the same as the feature_fields. For AutoML
Tables, the prediction output name presented in schema will be: predicted_{target_column}
, the
target_column
is the one you specified when you train the model. For Prediction output drift analysis: *
AutoML Classification, the distribution of the argmax label will be analyzed. * AutoML Regression, the
distribution of the value will be analyzed.
Declaration
[JsonProperty("predictionFields")]
public virtual IList<GoogleCloudAiplatformV1beta1ModelMonitoringSchemaFieldSchema> PredictionFields { get; set; }
Property Value
Type | Description |
---|---|
IList<GoogleCloudAiplatformV1beta1ModelMonitoringSchemaFieldSchema> |