Show / Hide Table of Contents

Class GoogleCloudAiplatformV1beta1ModelMonitoringSchema

The Model Monitoring Schema definition.

Inheritance
object
GoogleCloudAiplatformV1beta1ModelMonitoringSchema
Implements
IDirectResponseSchema
Inherited Members
object.Equals(object)
object.Equals(object, object)
object.GetHashCode()
object.GetType()
object.MemberwiseClone()
object.ReferenceEquals(object, object)
object.ToString()
Namespace: Google.Apis.Aiplatform.v1beta1.Data
Assembly: Google.Apis.Aiplatform.v1beta1.dll
Syntax
public class GoogleCloudAiplatformV1beta1ModelMonitoringSchema : IDirectResponseSchema

Properties

ETag

The ETag of the item.

Declaration
public virtual string ETag { get; set; }
Property Value
Type Description
string

FeatureFields

Feature names of the model. Vertex AI will try to match the features from your dataset as follows: * For 'csv' files, the header names are required, and we will extract the corresponding feature values when the header names align with the feature names. * For 'jsonl' files, we will extract the corresponding feature values if the key names match the feature names. Note: Nested features are not supported, so please ensure your features are flattened. Ensure the feature values are scalar or an array of scalars. * For 'bigquery' dataset, we will extract the corresponding feature values if the column names match the feature names. Note: The column type can be a scalar or an array of scalars. STRUCT or JSON types are not supported. You may use SQL queries to select or aggregate the relevant features from your original table. However, ensure that the 'schema' of the query results meets our requirements. * For the Vertex AI Endpoint Request Response Logging table or Vertex AI Batch Prediction Job results. If the instance_type is an array, ensure that the sequence in feature_fields matches the order of features in the prediction instance. We will match the feature with the array in the order specified in [feature_fields].

Declaration
[JsonProperty("featureFields")]
public virtual IList<GoogleCloudAiplatformV1beta1ModelMonitoringSchemaFieldSchema> FeatureFields { get; set; }
Property Value
Type Description
IList<GoogleCloudAiplatformV1beta1ModelMonitoringSchemaFieldSchema>

GroundTruthFields

Target /ground truth names of the model.

Declaration
[JsonProperty("groundTruthFields")]
public virtual IList<GoogleCloudAiplatformV1beta1ModelMonitoringSchemaFieldSchema> GroundTruthFields { get; set; }
Property Value
Type Description
IList<GoogleCloudAiplatformV1beta1ModelMonitoringSchemaFieldSchema>

PredictionFields

Prediction output names of the model. The requirements are the same as the feature_fields. For AutoML Tables, the prediction output name presented in schema will be: predicted_{target_column}, the target_column is the one you specified when you train the model. For Prediction output drift analysis: * AutoML Classification, the distribution of the argmax label will be analyzed. * AutoML Regression, the distribution of the value will be analyzed.

Declaration
[JsonProperty("predictionFields")]
public virtual IList<GoogleCloudAiplatformV1beta1ModelMonitoringSchemaFieldSchema> PredictionFields { get; set; }
Property Value
Type Description
IList<GoogleCloudAiplatformV1beta1ModelMonitoringSchemaFieldSchema>

Implements

IDirectResponseSchema
In this article
Back to top Generated by DocFX