Class GoogleCloudAiplatformV1beta1SchemaTrainingjobDefinitionAutoMlForecastingInputs
Implements
Inherited Members
Namespace: Google.Apis.Aiplatform.v1beta1.Data
Assembly: Google.Apis.Aiplatform.v1beta1.dll
Syntax
public class GoogleCloudAiplatformV1beta1SchemaTrainingjobDefinitionAutoMlForecastingInputs : IDirectResponseSchema
Properties
AdditionalExperiments
Additional experiment flags for the time series forcasting training.
Declaration
[JsonProperty("additionalExperiments")]
public virtual IList<string> AdditionalExperiments { get; set; }
Property Value
Type | Description |
---|---|
IList<string> |
AvailableAtForecastColumns
Names of columns that are available and provided when a forecast is requested. These columns contain information for the given entity (identified by the time_series_identifier_column column) that is known at forecast. For example, predicted weather for a specific day.
Declaration
[JsonProperty("availableAtForecastColumns")]
public virtual IList<string> AvailableAtForecastColumns { get; set; }
Property Value
Type | Description |
---|---|
IList<string> |
ContextWindow
The amount of time into the past training and prediction data is used for model training and prediction
respectively. Expressed in number of units defined by the data_granularity
field.
Declaration
[JsonProperty("contextWindow")]
public virtual long? ContextWindow { get; set; }
Property Value
Type | Description |
---|---|
long? |
DataGranularity
Expected difference in time granularity between rows in the data.
Declaration
[JsonProperty("dataGranularity")]
public virtual GoogleCloudAiplatformV1beta1SchemaTrainingjobDefinitionAutoMlForecastingInputsGranularity DataGranularity { get; set; }
Property Value
Type | Description |
---|---|
GoogleCloudAiplatformV1beta1SchemaTrainingjobDefinitionAutoMlForecastingInputsGranularity |
ETag
The ETag of the item.
Declaration
public virtual string ETag { get; set; }
Property Value
Type | Description |
---|---|
string |
EnableProbabilisticInference
If probabilistic inference is enabled, the model will fit a distribution that captures the uncertainty of a prediction. At inference time, the predictive distribution is used to make a point prediction that minimizes the optimization objective. For example, the mean of a predictive distribution is the point prediction that minimizes RMSE loss. If quantiles are specified, then the quantiles of the distribution are also returned. The optimization objective cannot be minimize-quantile-loss.
Declaration
[JsonProperty("enableProbabilisticInference")]
public virtual bool? EnableProbabilisticInference { get; set; }
Property Value
Type | Description |
---|---|
bool? |
ExportEvaluatedDataItemsConfig
Configuration for exporting test set predictions to a BigQuery table. If this configuration is absent, then the export is not performed.
Declaration
[JsonProperty("exportEvaluatedDataItemsConfig")]
public virtual GoogleCloudAiplatformV1beta1SchemaTrainingjobDefinitionExportEvaluatedDataItemsConfig ExportEvaluatedDataItemsConfig { get; set; }
Property Value
Type | Description |
---|---|
GoogleCloudAiplatformV1beta1SchemaTrainingjobDefinitionExportEvaluatedDataItemsConfig |
ForecastHorizon
The amount of time into the future for which forecasted values for the target are returned. Expressed in
number of units defined by the data_granularity
field.
Declaration
[JsonProperty("forecastHorizon")]
public virtual long? ForecastHorizon { get; set; }
Property Value
Type | Description |
---|---|
long? |
HierarchyConfig
Configuration that defines the hierarchical relationship of time series and parameters for hierarchical forecasting strategies.
Declaration
[JsonProperty("hierarchyConfig")]
public virtual GoogleCloudAiplatformV1beta1SchemaTrainingjobDefinitionHierarchyConfig HierarchyConfig { get; set; }
Property Value
Type | Description |
---|---|
GoogleCloudAiplatformV1beta1SchemaTrainingjobDefinitionHierarchyConfig |
HolidayRegions
The geographical region based on which the holiday effect is applied in modeling by adding holiday categorical array feature that include all holidays matching the date. This option only allowed when data_granularity is day. By default, holiday effect modeling is disabled. To turn it on, specify the holiday region using this option.
Declaration
[JsonProperty("holidayRegions")]
public virtual IList<string> HolidayRegions { get; set; }
Property Value
Type | Description |
---|---|
IList<string> |
OptimizationObjective
Objective function the model is optimizing towards. The training process creates a model that optimizes the
value of the objective function over the validation set. The supported optimization objectives: *
"minimize-rmse" (default) - Minimize root-mean-squared error (RMSE). * "minimize-mae" - Minimize
mean-absolute error (MAE). * "minimize-rmsle" - Minimize root-mean-squared log error (RMSLE). *
"minimize-rmspe" - Minimize root-mean-squared percentage error (RMSPE). * "minimize-wape-mae" - Minimize the
combination of weighted absolute percentage error (WAPE) and mean-absolute-error (MAE). *
"minimize-quantile-loss" - Minimize the quantile loss at the quantiles defined in quantiles
. *
"minimize-mape" - Minimize the mean absolute percentage error.
Declaration
[JsonProperty("optimizationObjective")]
public virtual string OptimizationObjective { get; set; }
Property Value
Type | Description |
---|---|
string |
Quantiles
Quantiles to use for minimize-quantile-loss optimization_objective
, or for probabilistic inference. Up to
5 quantiles are allowed of values between 0 and 1, exclusive. Required if the value of
optimization_objective is minimize-quantile-loss. Represents the percent quantiles to use for that
objective. Quantiles must be unique.
Declaration
[JsonProperty("quantiles")]
public virtual IList<double?> Quantiles { get; set; }
Property Value
Type | Description |
---|---|
IList<double?> |
TargetColumn
The name of the column that the Model is to predict values for. This column must be unavailable at forecast.
Declaration
[JsonProperty("targetColumn")]
public virtual string TargetColumn { get; set; }
Property Value
Type | Description |
---|---|
string |
TimeColumn
The name of the column that identifies time order in the time series. This column must be available at forecast.
Declaration
[JsonProperty("timeColumn")]
public virtual string TimeColumn { get; set; }
Property Value
Type | Description |
---|---|
string |
TimeSeriesAttributeColumns
Column names that should be used as attribute columns. The value of these columns does not vary as a function of time. For example, store ID or item color.
Declaration
[JsonProperty("timeSeriesAttributeColumns")]
public virtual IList<string> TimeSeriesAttributeColumns { get; set; }
Property Value
Type | Description |
---|---|
IList<string> |
TimeSeriesIdentifierColumn
The name of the column that identifies the time series.
Declaration
[JsonProperty("timeSeriesIdentifierColumn")]
public virtual string TimeSeriesIdentifierColumn { get; set; }
Property Value
Type | Description |
---|---|
string |
TrainBudgetMilliNodeHours
Required. The train budget of creating this model, expressed in milli node hours i.e. 1,000 value in this field means 1 node hour. The training cost of the model will not exceed this budget. The final cost will be attempted to be close to the budget, though may end up being (even) noticeably smaller - at the backend's discretion. This especially may happen when further model training ceases to provide any improvements. If the budget is set to a value known to be insufficient to train a model for the given dataset, the training won't be attempted and will error. The train budget must be between 1,000 and 72,000 milli node hours, inclusive.
Declaration
[JsonProperty("trainBudgetMilliNodeHours")]
public virtual long? TrainBudgetMilliNodeHours { get; set; }
Property Value
Type | Description |
---|---|
long? |
Transformations
Each transformation will apply transform function to given input column. And the result will be used for training. When creating transformation for BigQuery Struct column, the column should be flattened using "." as the delimiter.
Declaration
[JsonProperty("transformations")]
public virtual IList<GoogleCloudAiplatformV1beta1SchemaTrainingjobDefinitionAutoMlForecastingInputsTransformation> Transformations { get; set; }
Property Value
Type | Description |
---|---|
IList<GoogleCloudAiplatformV1beta1SchemaTrainingjobDefinitionAutoMlForecastingInputsTransformation> |
UnavailableAtForecastColumns
Names of columns that are unavailable when a forecast is requested. This column contains information for the given entity (identified by the time_series_identifier_column) that is unknown before the forecast For example, actual weather on a given day.
Declaration
[JsonProperty("unavailableAtForecastColumns")]
public virtual IList<string> UnavailableAtForecastColumns { get; set; }
Property Value
Type | Description |
---|---|
IList<string> |
ValidationOptions
Validation options for the data validation component. The available options are: * "fail-pipeline" - default, will validate against the validation and fail the pipeline if it fails. * "ignore-validation" - ignore the results of the validation and continue
Declaration
[JsonProperty("validationOptions")]
public virtual string ValidationOptions { get; set; }
Property Value
Type | Description |
---|---|
string |
WeightColumn
Column name that should be used as the weight column. Higher values in this column give more importance to the row during model training. The column must have numeric values between 0 and 10000 inclusively; 0 means the row is ignored for training. If weight column field is not set, then all rows are assumed to have equal weight of 1.
Declaration
[JsonProperty("weightColumn")]
public virtual string WeightColumn { get; set; }
Property Value
Type | Description |
---|---|
string |
WindowConfig
Config containing strategy for generating sliding windows.
Declaration
[JsonProperty("windowConfig")]
public virtual GoogleCloudAiplatformV1beta1SchemaTrainingjobDefinitionWindowConfig WindowConfig { get; set; }
Property Value
Type | Description |
---|---|
GoogleCloudAiplatformV1beta1SchemaTrainingjobDefinitionWindowConfig |