Show / Hide Table of Contents

Class TrainingOptions

Inheritance
System.Object
TrainingOptions
Implements
IDirectResponseSchema
Inherited Members
System.Object.Equals(System.Object)
System.Object.Equals(System.Object, System.Object)
System.Object.GetHashCode()
System.Object.GetType()
System.Object.MemberwiseClone()
System.Object.ReferenceEquals(System.Object, System.Object)
System.Object.ToString()
Namespace: Google.Apis.Bigquery.v2.Data
Assembly: Google.Apis.Bigquery.v2.dll
Syntax
public class TrainingOptions : IDirectResponseSchema

Properties

DataSplitColumn

The column to split data with. This column won't be used as a feature. 1. When data_split_method is CUSTOM, the corresponding column should be boolean. The rows with true value tag are eval data, and the false are training data. 2. When data_split_method is SEQ, the first DATA_SPLIT_EVAL_FRACTION rows (from smallest to largest) in the corresponding column are used as training data, and the rest are eval data. It respects the order in Orderable data types: https://cloud.google.com/bigquery/docs/reference/standard-sql /data-types#data-type-properties

Declaration
[JsonProperty("dataSplitColumn")]
public virtual string DataSplitColumn { get; set; }
Property Value
Type Description
System.String

DataSplitEvalFraction

The fraction of evaluation data over the whole input data. The rest of data will be used as training data. The format should be double. Accurate to two decimal places. Default value is 0.2.

Declaration
[JsonProperty("dataSplitEvalFraction")]
public virtual double? DataSplitEvalFraction { get; set; }
Property Value
Type Description
System.Nullable<System.Double>

DataSplitMethod

The data split type for training and evaluation, e.g. RANDOM.

Declaration
[JsonProperty("dataSplitMethod")]
public virtual string DataSplitMethod { get; set; }
Property Value
Type Description
System.String

DistanceType

Distance type for clustering models.

Declaration
[JsonProperty("distanceType")]
public virtual string DistanceType { get; set; }
Property Value
Type Description
System.String

EarlyStop

Whether to stop early when the loss doesn't improve significantly any more (compared to min_relative_progress). Used only for iterative training algorithms.

Declaration
[JsonProperty("earlyStop")]
public virtual bool? EarlyStop { get; set; }
Property Value
Type Description
System.Nullable<System.Boolean>

ETag

The ETag of the item.

Declaration
public virtual string ETag { get; set; }
Property Value
Type Description
System.String

InitialLearnRate

Specifies the initial learning rate for the line search learn rate strategy.

Declaration
[JsonProperty("initialLearnRate")]
public virtual double? InitialLearnRate { get; set; }
Property Value
Type Description
System.Nullable<System.Double>

InputLabelColumns

Name of input label columns in training data.

Declaration
[JsonProperty("inputLabelColumns")]
public virtual IList<string> InputLabelColumns { get; set; }
Property Value
Type Description
System.Collections.Generic.IList<System.String>

KmeansInitializationColumn

The column used to provide the initial centroids for kmeans algorithm when kmeans_initialization_method is CUSTOM.

Declaration
[JsonProperty("kmeansInitializationColumn")]
public virtual string KmeansInitializationColumn { get; set; }
Property Value
Type Description
System.String

KmeansInitializationMethod

The method used to initialize the centroids for kmeans algorithm.

Declaration
[JsonProperty("kmeansInitializationMethod")]
public virtual string KmeansInitializationMethod { get; set; }
Property Value
Type Description
System.String

L1Regularization

L1 regularization coefficient.

Declaration
[JsonProperty("l1Regularization")]
public virtual double? L1Regularization { get; set; }
Property Value
Type Description
System.Nullable<System.Double>

L2Regularization

L2 regularization coefficient.

Declaration
[JsonProperty("l2Regularization")]
public virtual double? L2Regularization { get; set; }
Property Value
Type Description
System.Nullable<System.Double>

LabelClassWeights

Weights associated with each label class, for rebalancing the training data. Only applicable for classification models.

Declaration
[JsonProperty("labelClassWeights")]
public virtual IDictionary<string, double? > LabelClassWeights { get; set; }
Property Value
Type Description
System.Collections.Generic.IDictionary<System.String, System.Nullable<System.Double>>

LearnRate

Learning rate in training. Used only for iterative training algorithms.

Declaration
[JsonProperty("learnRate")]
public virtual double? LearnRate { get; set; }
Property Value
Type Description
System.Nullable<System.Double>

LearnRateStrategy

The strategy to determine learn rate for the current iteration.

Declaration
[JsonProperty("learnRateStrategy")]
public virtual string LearnRateStrategy { get; set; }
Property Value
Type Description
System.String

LossType

Type of loss function used during training run.

Declaration
[JsonProperty("lossType")]
public virtual string LossType { get; set; }
Property Value
Type Description
System.String

MaxIterations

The maximum number of iterations in training. Used only for iterative training algorithms.

Declaration
[JsonProperty("maxIterations")]
public virtual long? MaxIterations { get; set; }
Property Value
Type Description
System.Nullable<System.Int64>

MinRelativeProgress

When early_stop is true, stops training when accuracy improvement is less than 'min_relative_progress'. Used only for iterative training algorithms.

Declaration
[JsonProperty("minRelativeProgress")]
public virtual double? MinRelativeProgress { get; set; }
Property Value
Type Description
System.Nullable<System.Double>

ModelUri

[Beta] Google Cloud Storage URI from which the model was imported. Only applicable for imported models.

Declaration
[JsonProperty("modelUri")]
public virtual string ModelUri { get; set; }
Property Value
Type Description
System.String

NumClusters

Number of clusters for clustering models.

Declaration
[JsonProperty("numClusters")]
public virtual long? NumClusters { get; set; }
Property Value
Type Description
System.Nullable<System.Int64>

OptimizationStrategy

Optimization strategy for training linear regression models.

Declaration
[JsonProperty("optimizationStrategy")]
public virtual string OptimizationStrategy { get; set; }
Property Value
Type Description
System.String

WarmStart

Whether to train a model from the last checkpoint.

Declaration
[JsonProperty("warmStart")]
public virtual bool? WarmStart { get; set; }
Property Value
Type Description
System.Nullable<System.Boolean>

Implements

IDirectResponseSchema
Back to top