Class TrainingOptions
Options used in model training.
Inheritance
Implements
Inherited Members
Namespace: Google.Apis.Bigquery.v2.Data
Assembly: Google.Apis.Bigquery.v2.dll
Syntax
public class TrainingOptions : IDirectResponseSchema
Properties
AdjustStepChanges
If true, detect step changes and make data adjustment in the input time series.
Declaration
[JsonProperty("adjustStepChanges")]
public virtual bool? AdjustStepChanges { get; set; }
Property Value
| Type | Description |
|---|---|
| bool? |
AutoArima
Whether to enable auto ARIMA or not.
Declaration
[JsonProperty("autoArima")]
public virtual bool? AutoArima { get; set; }
Property Value
| Type | Description |
|---|---|
| bool? |
AutoArimaMaxOrder
The max value of non-seasonal p and q.
Declaration
[JsonProperty("autoArimaMaxOrder")]
public virtual long? AutoArimaMaxOrder { get; set; }
Property Value
| Type | Description |
|---|---|
| long? |
BatchSize
Batch size for dnn models.
Declaration
[JsonProperty("batchSize")]
public virtual long? BatchSize { get; set; }
Property Value
| Type | Description |
|---|---|
| long? |
BoosterType
Booster type for boosted tree models.
Declaration
[JsonProperty("boosterType")]
public virtual string BoosterType { get; set; }
Property Value
| Type | Description |
|---|---|
| string |
CalculatePValues
Whether or not p-value test should be computed for this model. Only available for linear and logistic regression models.
Declaration
[JsonProperty("calculatePValues")]
public virtual bool? CalculatePValues { get; set; }
Property Value
| Type | Description |
|---|---|
| bool? |
CleanSpikesAndDips
If true, clean spikes and dips in the input time series.
Declaration
[JsonProperty("cleanSpikesAndDips")]
public virtual bool? CleanSpikesAndDips { get; set; }
Property Value
| Type | Description |
|---|---|
| bool? |
ColorSpace
Enums for color space, used for processing images in Object Table. See more details at https://www.tensorflow.org/io/tutorials/colorspace.
Declaration
[JsonProperty("colorSpace")]
public virtual string ColorSpace { get; set; }
Property Value
| Type | Description |
|---|---|
| string |
ColsampleBylevel
Subsample ratio of columns for each level for boosted tree models.
Declaration
[JsonProperty("colsampleBylevel")]
public virtual double? ColsampleBylevel { get; set; }
Property Value
| Type | Description |
|---|---|
| double? |
ColsampleBynode
Subsample ratio of columns for each node(split) for boosted tree models.
Declaration
[JsonProperty("colsampleBynode")]
public virtual double? ColsampleBynode { get; set; }
Property Value
| Type | Description |
|---|---|
| double? |
ColsampleBytree
Subsample ratio of columns when constructing each tree for boosted tree models.
Declaration
[JsonProperty("colsampleBytree")]
public virtual double? ColsampleBytree { get; set; }
Property Value
| Type | Description |
|---|---|
| double? |
DartNormalizeType
Type of normalization algorithm for boosted tree models using dart booster.
Declaration
[JsonProperty("dartNormalizeType")]
public virtual string DartNormalizeType { get; set; }
Property Value
| Type | Description |
|---|---|
| string |
DataFrequency
The data frequency of a time series.
Declaration
[JsonProperty("dataFrequency")]
public virtual string DataFrequency { get; set; }
Property Value
| Type | Description |
|---|---|
| string |
DataSplitColumn
The column to split data with. This column won't be used as a feature. 1. When data_split_method is CUSTOM, the corresponding column should be boolean. The rows with true value tag are eval data, and the false are training data. 2. When data_split_method is SEQ, the first DATA_SPLIT_EVAL_FRACTION rows (from smallest to largest) in the corresponding column are used as training data, and the rest are eval data. It respects the order in Orderable data types: https://cloud.google.com/bigquery/docs/reference/standard-sql/data-types#data-type-properties
Declaration
[JsonProperty("dataSplitColumn")]
public virtual string DataSplitColumn { get; set; }
Property Value
| Type | Description |
|---|---|
| string |
DataSplitEvalFraction
The fraction of evaluation data over the whole input data. The rest of data will be used as training data. The format should be double. Accurate to two decimal places. Default value is 0.2.
Declaration
[JsonProperty("dataSplitEvalFraction")]
public virtual double? DataSplitEvalFraction { get; set; }
Property Value
| Type | Description |
|---|---|
| double? |
DataSplitMethod
The data split type for training and evaluation, e.g. RANDOM.
Declaration
[JsonProperty("dataSplitMethod")]
public virtual string DataSplitMethod { get; set; }
Property Value
| Type | Description |
|---|---|
| string |
DecomposeTimeSeries
If true, perform decompose time series and save the results.
Declaration
[JsonProperty("decomposeTimeSeries")]
public virtual bool? DecomposeTimeSeries { get; set; }
Property Value
| Type | Description |
|---|---|
| bool? |
DistanceType
Distance type for clustering models.
Declaration
[JsonProperty("distanceType")]
public virtual string DistanceType { get; set; }
Property Value
| Type | Description |
|---|---|
| string |
Dropout
Dropout probability for dnn models.
Declaration
[JsonProperty("dropout")]
public virtual double? Dropout { get; set; }
Property Value
| Type | Description |
|---|---|
| double? |
EarlyStop
Whether to stop early when the loss doesn't improve significantly any more (compared to min_relative_progress). Used only for iterative training algorithms.
Declaration
[JsonProperty("earlyStop")]
public virtual bool? EarlyStop { get; set; }
Property Value
| Type | Description |
|---|---|
| bool? |
EnableGlobalExplain
If true, enable global explanation during training.
Declaration
[JsonProperty("enableGlobalExplain")]
public virtual bool? EnableGlobalExplain { get; set; }
Property Value
| Type | Description |
|---|---|
| bool? |
ETag
The ETag of the item.
Declaration
public virtual string ETag { get; set; }
Property Value
| Type | Description |
|---|---|
| string |
FeedbackType
Feedback type that specifies which algorithm to run for matrix factorization.
Declaration
[JsonProperty("feedbackType")]
public virtual string FeedbackType { get; set; }
Property Value
| Type | Description |
|---|---|
| string |
HiddenUnits
Hidden units for dnn models.
Declaration
[JsonProperty("hiddenUnits")]
public virtual IList<long?> HiddenUnits { get; set; }
Property Value
| Type | Description |
|---|---|
| System.Collections.Generic.IList<T><long?> |
HolidayRegion
The geographical region based on which the holidays are considered in time series modeling. If a valid value is specified, then holiday effects modeling is enabled.
Declaration
[JsonProperty("holidayRegion")]
public virtual string HolidayRegion { get; set; }
Property Value
| Type | Description |
|---|---|
| string |
Horizon
The number of periods ahead that need to be forecasted.
Declaration
[JsonProperty("horizon")]
public virtual long? Horizon { get; set; }
Property Value
| Type | Description |
|---|---|
| long? |
HparamTuningObjectives
The target evaluation metrics to optimize the hyperparameters for.
Declaration
[JsonProperty("hparamTuningObjectives")]
public virtual IList<string> HparamTuningObjectives { get; set; }
Property Value
| Type | Description |
|---|---|
| System.Collections.Generic.IList<T><string> |
IncludeDrift
Include drift when fitting an ARIMA model.
Declaration
[JsonProperty("includeDrift")]
public virtual bool? IncludeDrift { get; set; }
Property Value
| Type | Description |
|---|---|
| bool? |
InitialLearnRate
Specifies the initial learning rate for the line search learn rate strategy.
Declaration
[JsonProperty("initialLearnRate")]
public virtual double? InitialLearnRate { get; set; }
Property Value
| Type | Description |
|---|---|
| double? |
InputLabelColumns
Name of input label columns in training data.
Declaration
[JsonProperty("inputLabelColumns")]
public virtual IList<string> InputLabelColumns { get; set; }
Property Value
| Type | Description |
|---|---|
| System.Collections.Generic.IList<T><string> |
IntegratedGradientsNumSteps
Number of integral steps for the integrated gradients explain method.
Declaration
[JsonProperty("integratedGradientsNumSteps")]
public virtual long? IntegratedGradientsNumSteps { get; set; }
Property Value
| Type | Description |
|---|---|
| long? |
ItemColumn
Item column specified for matrix factorization models.
Declaration
[JsonProperty("itemColumn")]
public virtual string ItemColumn { get; set; }
Property Value
| Type | Description |
|---|---|
| string |
KmeansInitializationColumn
The column used to provide the initial centroids for kmeans algorithm when kmeans_initialization_method is CUSTOM.
Declaration
[JsonProperty("kmeansInitializationColumn")]
public virtual string KmeansInitializationColumn { get; set; }
Property Value
| Type | Description |
|---|---|
| string |
KmeansInitializationMethod
The method used to initialize the centroids for kmeans algorithm.
Declaration
[JsonProperty("kmeansInitializationMethod")]
public virtual string KmeansInitializationMethod { get; set; }
Property Value
| Type | Description |
|---|---|
| string |
L1Regularization
L1 regularization coefficient.
Declaration
[JsonProperty("l1Regularization")]
public virtual double? L1Regularization { get; set; }
Property Value
| Type | Description |
|---|---|
| double? |
L2Regularization
L2 regularization coefficient.
Declaration
[JsonProperty("l2Regularization")]
public virtual double? L2Regularization { get; set; }
Property Value
| Type | Description |
|---|---|
| double? |
LabelClassWeights
Weights associated with each label class, for rebalancing the training data. Only applicable for classification models.
Declaration
[JsonProperty("labelClassWeights")]
public virtual IDictionary<string, double?> LabelClassWeights { get; set; }
Property Value
| Type | Description |
|---|---|
| System.Collections.Generic.IDictionary<TKey, TValue><string, double?> |
LearnRate
Learning rate in training. Used only for iterative training algorithms.
Declaration
[JsonProperty("learnRate")]
public virtual double? LearnRate { get; set; }
Property Value
| Type | Description |
|---|---|
| double? |
LearnRateStrategy
The strategy to determine learn rate for the current iteration.
Declaration
[JsonProperty("learnRateStrategy")]
public virtual string LearnRateStrategy { get; set; }
Property Value
| Type | Description |
|---|---|
| string |
LossType
Type of loss function used during training run.
Declaration
[JsonProperty("lossType")]
public virtual string LossType { get; set; }
Property Value
| Type | Description |
|---|---|
| string |
MaxIterations
The maximum number of iterations in training. Used only for iterative training algorithms.
Declaration
[JsonProperty("maxIterations")]
public virtual long? MaxIterations { get; set; }
Property Value
| Type | Description |
|---|---|
| long? |
MaxParallelTrials
Maximum number of trials to run in parallel.
Declaration
[JsonProperty("maxParallelTrials")]
public virtual long? MaxParallelTrials { get; set; }
Property Value
| Type | Description |
|---|---|
| long? |
MaxTimeSeriesLength
Get truncated length by last n points in time series. Use separately from time_series_length_fraction and min_time_series_length.
Declaration
[JsonProperty("maxTimeSeriesLength")]
public virtual long? MaxTimeSeriesLength { get; set; }
Property Value
| Type | Description |
|---|---|
| long? |
MaxTreeDepth
Maximum depth of a tree for boosted tree models.
Declaration
[JsonProperty("maxTreeDepth")]
public virtual long? MaxTreeDepth { get; set; }
Property Value
| Type | Description |
|---|---|
| long? |
MinRelativeProgress
When early_stop is true, stops training when accuracy improvement is less than 'min_relative_progress'. Used only for iterative training algorithms.
Declaration
[JsonProperty("minRelativeProgress")]
public virtual double? MinRelativeProgress { get; set; }
Property Value
| Type | Description |
|---|---|
| double? |
MinSplitLoss
Minimum split loss for boosted tree models.
Declaration
[JsonProperty("minSplitLoss")]
public virtual double? MinSplitLoss { get; set; }
Property Value
| Type | Description |
|---|---|
| double? |
MinTimeSeriesLength
Set fast trend ARIMA_PLUS model minimum training length. Use in pair with time_series_length_fraction.
Declaration
[JsonProperty("minTimeSeriesLength")]
public virtual long? MinTimeSeriesLength { get; set; }
Property Value
| Type | Description |
|---|---|
| long? |
MinTreeChildWeight
Minimum sum of instance weight needed in a child for boosted tree models.
Declaration
[JsonProperty("minTreeChildWeight")]
public virtual long? MinTreeChildWeight { get; set; }
Property Value
| Type | Description |
|---|---|
| long? |
ModelUri
Google Cloud Storage URI from which the model was imported. Only applicable for imported models.
Declaration
[JsonProperty("modelUri")]
public virtual string ModelUri { get; set; }
Property Value
| Type | Description |
|---|---|
| string |
NonSeasonalOrder
A specification of the non-seasonal part of the ARIMA model: the three components (p, d, q) are the AR order, the degree of differencing, and the MA order.
Declaration
[JsonProperty("nonSeasonalOrder")]
public virtual ArimaOrder NonSeasonalOrder { get; set; }
Property Value
| Type | Description |
|---|---|
| ArimaOrder |
NumClusters
Number of clusters for clustering models.
Declaration
[JsonProperty("numClusters")]
public virtual long? NumClusters { get; set; }
Property Value
| Type | Description |
|---|---|
| long? |
NumFactors
Num factors specified for matrix factorization models.
Declaration
[JsonProperty("numFactors")]
public virtual long? NumFactors { get; set; }
Property Value
| Type | Description |
|---|---|
| long? |
NumParallelTree
Number of parallel trees constructed during each iteration for boosted tree models.
Declaration
[JsonProperty("numParallelTree")]
public virtual long? NumParallelTree { get; set; }
Property Value
| Type | Description |
|---|---|
| long? |
NumTrials
Number of trials to run this hyperparameter tuning job.
Declaration
[JsonProperty("numTrials")]
public virtual long? NumTrials { get; set; }
Property Value
| Type | Description |
|---|---|
| long? |
OptimizationStrategy
Optimization strategy for training linear regression models.
Declaration
[JsonProperty("optimizationStrategy")]
public virtual string OptimizationStrategy { get; set; }
Property Value
| Type | Description |
|---|---|
| string |
PreserveInputStructs
Whether to preserve the input structs in output feature names. Suppose there is a struct A with field b. When false (default), the output feature name is A_b. When true, the output feature name is A.b.
Declaration
[JsonProperty("preserveInputStructs")]
public virtual bool? PreserveInputStructs { get; set; }
Property Value
| Type | Description |
|---|---|
| bool? |
SampledShapleyNumPaths
Number of paths for the sampled Shapley explain method.
Declaration
[JsonProperty("sampledShapleyNumPaths")]
public virtual long? SampledShapleyNumPaths { get; set; }
Property Value
| Type | Description |
|---|---|
| long? |
Subsample
Subsample fraction of the training data to grow tree to prevent overfitting for boosted tree models.
Declaration
[JsonProperty("subsample")]
public virtual double? Subsample { get; set; }
Property Value
| Type | Description |
|---|---|
| double? |
TimeSeriesDataColumn
Column to be designated as time series data for ARIMA model.
Declaration
[JsonProperty("timeSeriesDataColumn")]
public virtual string TimeSeriesDataColumn { get; set; }
Property Value
| Type | Description |
|---|---|
| string |
TimeSeriesIdColumn
The time series id column that was used during ARIMA model training.
Declaration
[JsonProperty("timeSeriesIdColumn")]
public virtual string TimeSeriesIdColumn { get; set; }
Property Value
| Type | Description |
|---|---|
| string |
TimeSeriesIdColumns
The time series id columns that were used during ARIMA model training.
Declaration
[JsonProperty("timeSeriesIdColumns")]
public virtual IList<string> TimeSeriesIdColumns { get; set; }
Property Value
| Type | Description |
|---|---|
| System.Collections.Generic.IList<T><string> |
TimeSeriesLengthFraction
Get truncated length by fraction in time series.
Declaration
[JsonProperty("timeSeriesLengthFraction")]
public virtual double? TimeSeriesLengthFraction { get; set; }
Property Value
| Type | Description |
|---|---|
| double? |
TimeSeriesTimestampColumn
Column to be designated as time series timestamp for ARIMA model.
Declaration
[JsonProperty("timeSeriesTimestampColumn")]
public virtual string TimeSeriesTimestampColumn { get; set; }
Property Value
| Type | Description |
|---|---|
| string |
TreeMethod
Tree construction algorithm for boosted tree models.
Declaration
[JsonProperty("treeMethod")]
public virtual string TreeMethod { get; set; }
Property Value
| Type | Description |
|---|---|
| string |
TrendSmoothingWindowSize
The smoothing window size for the trend component of the time series.
Declaration
[JsonProperty("trendSmoothingWindowSize")]
public virtual long? TrendSmoothingWindowSize { get; set; }
Property Value
| Type | Description |
|---|---|
| long? |
UserColumn
User column specified for matrix factorization models.
Declaration
[JsonProperty("userColumn")]
public virtual string UserColumn { get; set; }
Property Value
| Type | Description |
|---|---|
| string |
WalsAlpha
Hyperparameter for matrix factoration when implicit feedback type is specified.
Declaration
[JsonProperty("walsAlpha")]
public virtual double? WalsAlpha { get; set; }
Property Value
| Type | Description |
|---|---|
| double? |
WarmStart
Whether to train a model from the last checkpoint.
Declaration
[JsonProperty("warmStart")]
public virtual bool? WarmStart { get; set; }
Property Value
| Type | Description |
|---|---|
| bool? |