Class TrainingOptions
Options used in model training.
Implements
Inherited Members
Namespace: Google.Apis.Bigquery.v2.Data
Assembly: Google.Apis.Bigquery.v2.dll
Syntax
public class TrainingOptions : IDirectResponseSchema
Properties
ActivationFn
Activation function of the neural nets.
Declaration
[JsonProperty("activationFn")]
public virtual string ActivationFn { get; set; }
Property Value
Type | Description |
---|---|
string |
AdjustStepChanges
If true, detect step changes and make data adjustment in the input time series.
Declaration
[JsonProperty("adjustStepChanges")]
public virtual bool? AdjustStepChanges { get; set; }
Property Value
Type | Description |
---|---|
bool? |
ApproxGlobalFeatureContrib
Whether to use approximate feature contribution method in XGBoost model explanation for global explain.
Declaration
[JsonProperty("approxGlobalFeatureContrib")]
public virtual bool? ApproxGlobalFeatureContrib { get; set; }
Property Value
Type | Description |
---|---|
bool? |
AutoArima
Whether to enable auto ARIMA or not.
Declaration
[JsonProperty("autoArima")]
public virtual bool? AutoArima { get; set; }
Property Value
Type | Description |
---|---|
bool? |
AutoArimaMaxOrder
The max value of the sum of non-seasonal p and q.
Declaration
[JsonProperty("autoArimaMaxOrder")]
public virtual long? AutoArimaMaxOrder { get; set; }
Property Value
Type | Description |
---|---|
long? |
AutoArimaMinOrder
The min value of the sum of non-seasonal p and q.
Declaration
[JsonProperty("autoArimaMinOrder")]
public virtual long? AutoArimaMinOrder { get; set; }
Property Value
Type | Description |
---|---|
long? |
AutoClassWeights
Whether to calculate class weights automatically based on the popularity of each label.
Declaration
[JsonProperty("autoClassWeights")]
public virtual bool? AutoClassWeights { get; set; }
Property Value
Type | Description |
---|---|
bool? |
BatchSize
Batch size for dnn models.
Declaration
[JsonProperty("batchSize")]
public virtual long? BatchSize { get; set; }
Property Value
Type | Description |
---|---|
long? |
BoosterType
Booster type for boosted tree models.
Declaration
[JsonProperty("boosterType")]
public virtual string BoosterType { get; set; }
Property Value
Type | Description |
---|---|
string |
BudgetHours
Budget in hours for AutoML training.
Declaration
[JsonProperty("budgetHours")]
public virtual double? BudgetHours { get; set; }
Property Value
Type | Description |
---|---|
double? |
CalculatePValues
Whether or not p-value test should be computed for this model. Only available for linear and logistic regression models.
Declaration
[JsonProperty("calculatePValues")]
public virtual bool? CalculatePValues { get; set; }
Property Value
Type | Description |
---|---|
bool? |
CategoryEncodingMethod
Categorical feature encoding method.
Declaration
[JsonProperty("categoryEncodingMethod")]
public virtual string CategoryEncodingMethod { get; set; }
Property Value
Type | Description |
---|---|
string |
CleanSpikesAndDips
If true, clean spikes and dips in the input time series.
Declaration
[JsonProperty("cleanSpikesAndDips")]
public virtual bool? CleanSpikesAndDips { get; set; }
Property Value
Type | Description |
---|---|
bool? |
ColorSpace
Enums for color space, used for processing images in Object Table. See more details at https://www.tensorflow.org/io/tutorials/colorspace.
Declaration
[JsonProperty("colorSpace")]
public virtual string ColorSpace { get; set; }
Property Value
Type | Description |
---|---|
string |
ColsampleBylevel
Subsample ratio of columns for each level for boosted tree models.
Declaration
[JsonProperty("colsampleBylevel")]
public virtual double? ColsampleBylevel { get; set; }
Property Value
Type | Description |
---|---|
double? |
ColsampleBynode
Subsample ratio of columns for each node(split) for boosted tree models.
Declaration
[JsonProperty("colsampleBynode")]
public virtual double? ColsampleBynode { get; set; }
Property Value
Type | Description |
---|---|
double? |
ColsampleBytree
Subsample ratio of columns when constructing each tree for boosted tree models.
Declaration
[JsonProperty("colsampleBytree")]
public virtual double? ColsampleBytree { get; set; }
Property Value
Type | Description |
---|---|
double? |
ContributionMetric
The contribution metric. Applies to contribution analysis models. Allowed formats supported are for summable
and summable ratio contribution metrics. These include expressions such as SUM(x)
or SUM(x)/SUM(y)
,
where x and y are column names from the base table.
Declaration
[JsonProperty("contributionMetric")]
public virtual string ContributionMetric { get; set; }
Property Value
Type | Description |
---|---|
string |
DartNormalizeType
Type of normalization algorithm for boosted tree models using dart booster.
Declaration
[JsonProperty("dartNormalizeType")]
public virtual string DartNormalizeType { get; set; }
Property Value
Type | Description |
---|---|
string |
DataFrequency
The data frequency of a time series.
Declaration
[JsonProperty("dataFrequency")]
public virtual string DataFrequency { get; set; }
Property Value
Type | Description |
---|---|
string |
DataSplitColumn
The column to split data with. This column won't be used as a feature. 1. When data_split_method is CUSTOM, the corresponding column should be boolean. The rows with true value tag are eval data, and the false are training data. 2. When data_split_method is SEQ, the first DATA_SPLIT_EVAL_FRACTION rows (from smallest to largest) in the corresponding column are used as training data, and the rest are eval data. It respects the order in Orderable data types: https://cloud.google.com/bigquery/docs/reference/standard-sql/data-types#data-type-properties
Declaration
[JsonProperty("dataSplitColumn")]
public virtual string DataSplitColumn { get; set; }
Property Value
Type | Description |
---|---|
string |
DataSplitEvalFraction
The fraction of evaluation data over the whole input data. The rest of data will be used as training data. The format should be double. Accurate to two decimal places. Default value is 0.2.
Declaration
[JsonProperty("dataSplitEvalFraction")]
public virtual double? DataSplitEvalFraction { get; set; }
Property Value
Type | Description |
---|---|
double? |
DataSplitMethod
The data split type for training and evaluation, e.g. RANDOM.
Declaration
[JsonProperty("dataSplitMethod")]
public virtual string DataSplitMethod { get; set; }
Property Value
Type | Description |
---|---|
string |
DecomposeTimeSeries
If true, perform decompose time series and save the results.
Declaration
[JsonProperty("decomposeTimeSeries")]
public virtual bool? DecomposeTimeSeries { get; set; }
Property Value
Type | Description |
---|---|
bool? |
DimensionIdColumns
Optional. Names of the columns to slice on. Applies to contribution analysis models.
Declaration
[JsonProperty("dimensionIdColumns")]
public virtual IList<string> DimensionIdColumns { get; set; }
Property Value
Type | Description |
---|---|
IList<string> |
DistanceType
Distance type for clustering models.
Declaration
[JsonProperty("distanceType")]
public virtual string DistanceType { get; set; }
Property Value
Type | Description |
---|---|
string |
Dropout
Dropout probability for dnn models.
Declaration
[JsonProperty("dropout")]
public virtual double? Dropout { get; set; }
Property Value
Type | Description |
---|---|
double? |
ETag
The ETag of the item.
Declaration
public virtual string ETag { get; set; }
Property Value
Type | Description |
---|---|
string |
EarlyStop
Whether to stop early when the loss doesn't improve significantly any more (compared to min_relative_progress). Used only for iterative training algorithms.
Declaration
[JsonProperty("earlyStop")]
public virtual bool? EarlyStop { get; set; }
Property Value
Type | Description |
---|---|
bool? |
EnableGlobalExplain
If true, enable global explanation during training.
Declaration
[JsonProperty("enableGlobalExplain")]
public virtual bool? EnableGlobalExplain { get; set; }
Property Value
Type | Description |
---|---|
bool? |
FeedbackType
Feedback type that specifies which algorithm to run for matrix factorization.
Declaration
[JsonProperty("feedbackType")]
public virtual string FeedbackType { get; set; }
Property Value
Type | Description |
---|---|
string |
FitIntercept
Whether the model should include intercept during model training.
Declaration
[JsonProperty("fitIntercept")]
public virtual bool? FitIntercept { get; set; }
Property Value
Type | Description |
---|---|
bool? |
HiddenUnits
Hidden units for dnn models.
Declaration
[JsonProperty("hiddenUnits")]
public virtual IList<long?> HiddenUnits { get; set; }
Property Value
Type | Description |
---|---|
IList<long?> |
HolidayRegion
The geographical region based on which the holidays are considered in time series modeling. If a valid value is specified, then holiday effects modeling is enabled.
Declaration
[JsonProperty("holidayRegion")]
public virtual string HolidayRegion { get; set; }
Property Value
Type | Description |
---|---|
string |
HolidayRegions
A list of geographical regions that are used for time series modeling.
Declaration
[JsonProperty("holidayRegions")]
public virtual IList<string> HolidayRegions { get; set; }
Property Value
Type | Description |
---|---|
IList<string> |
Horizon
The number of periods ahead that need to be forecasted.
Declaration
[JsonProperty("horizon")]
public virtual long? Horizon { get; set; }
Property Value
Type | Description |
---|---|
long? |
HparamTuningObjectives
The target evaluation metrics to optimize the hyperparameters for.
Declaration
[JsonProperty("hparamTuningObjectives")]
public virtual IList<string> HparamTuningObjectives { get; set; }
Property Value
Type | Description |
---|---|
IList<string> |
IncludeDrift
Include drift when fitting an ARIMA model.
Declaration
[JsonProperty("includeDrift")]
public virtual bool? IncludeDrift { get; set; }
Property Value
Type | Description |
---|---|
bool? |
InitialLearnRate
Specifies the initial learning rate for the line search learn rate strategy.
Declaration
[JsonProperty("initialLearnRate")]
public virtual double? InitialLearnRate { get; set; }
Property Value
Type | Description |
---|---|
double? |
InputLabelColumns
Name of input label columns in training data.
Declaration
[JsonProperty("inputLabelColumns")]
public virtual IList<string> InputLabelColumns { get; set; }
Property Value
Type | Description |
---|---|
IList<string> |
InstanceWeightColumn
Name of the instance weight column for training data. This column isn't be used as a feature.
Declaration
[JsonProperty("instanceWeightColumn")]
public virtual string InstanceWeightColumn { get; set; }
Property Value
Type | Description |
---|---|
string |
IntegratedGradientsNumSteps
Number of integral steps for the integrated gradients explain method.
Declaration
[JsonProperty("integratedGradientsNumSteps")]
public virtual long? IntegratedGradientsNumSteps { get; set; }
Property Value
Type | Description |
---|---|
long? |
IsTestColumn
Name of the column used to determine the rows corresponding to control and test. Applies to contribution analysis models.
Declaration
[JsonProperty("isTestColumn")]
public virtual string IsTestColumn { get; set; }
Property Value
Type | Description |
---|---|
string |
ItemColumn
Item column specified for matrix factorization models.
Declaration
[JsonProperty("itemColumn")]
public virtual string ItemColumn { get; set; }
Property Value
Type | Description |
---|---|
string |
KmeansInitializationColumn
The column used to provide the initial centroids for kmeans algorithm when kmeans_initialization_method is CUSTOM.
Declaration
[JsonProperty("kmeansInitializationColumn")]
public virtual string KmeansInitializationColumn { get; set; }
Property Value
Type | Description |
---|---|
string |
KmeansInitializationMethod
The method used to initialize the centroids for kmeans algorithm.
Declaration
[JsonProperty("kmeansInitializationMethod")]
public virtual string KmeansInitializationMethod { get; set; }
Property Value
Type | Description |
---|---|
string |
L1RegActivation
L1 regularization coefficient to activations.
Declaration
[JsonProperty("l1RegActivation")]
public virtual double? L1RegActivation { get; set; }
Property Value
Type | Description |
---|---|
double? |
L1Regularization
L1 regularization coefficient.
Declaration
[JsonProperty("l1Regularization")]
public virtual double? L1Regularization { get; set; }
Property Value
Type | Description |
---|---|
double? |
L2Regularization
L2 regularization coefficient.
Declaration
[JsonProperty("l2Regularization")]
public virtual double? L2Regularization { get; set; }
Property Value
Type | Description |
---|---|
double? |
LabelClassWeights
Weights associated with each label class, for rebalancing the training data. Only applicable for classification models.
Declaration
[JsonProperty("labelClassWeights")]
public virtual IDictionary<string, double?> LabelClassWeights { get; set; }
Property Value
Type | Description |
---|---|
IDictionary<string, double?> |
LearnRate
Learning rate in training. Used only for iterative training algorithms.
Declaration
[JsonProperty("learnRate")]
public virtual double? LearnRate { get; set; }
Property Value
Type | Description |
---|---|
double? |
LearnRateStrategy
The strategy to determine learn rate for the current iteration.
Declaration
[JsonProperty("learnRateStrategy")]
public virtual string LearnRateStrategy { get; set; }
Property Value
Type | Description |
---|---|
string |
LossType
Type of loss function used during training run.
Declaration
[JsonProperty("lossType")]
public virtual string LossType { get; set; }
Property Value
Type | Description |
---|---|
string |
MaxIterations
The maximum number of iterations in training. Used only for iterative training algorithms.
Declaration
[JsonProperty("maxIterations")]
public virtual long? MaxIterations { get; set; }
Property Value
Type | Description |
---|---|
long? |
MaxParallelTrials
Maximum number of trials to run in parallel.
Declaration
[JsonProperty("maxParallelTrials")]
public virtual long? MaxParallelTrials { get; set; }
Property Value
Type | Description |
---|---|
long? |
MaxTimeSeriesLength
The maximum number of time points in a time series that can be used in modeling the trend component of the
time series. Don't use this option with the timeSeriesLengthFraction
or minTimeSeriesLength
options.
Declaration
[JsonProperty("maxTimeSeriesLength")]
public virtual long? MaxTimeSeriesLength { get; set; }
Property Value
Type | Description |
---|---|
long? |
MaxTreeDepth
Maximum depth of a tree for boosted tree models.
Declaration
[JsonProperty("maxTreeDepth")]
public virtual long? MaxTreeDepth { get; set; }
Property Value
Type | Description |
---|---|
long? |
MinAprioriSupport
The apriori support minimum. Applies to contribution analysis models.
Declaration
[JsonProperty("minAprioriSupport")]
public virtual double? MinAprioriSupport { get; set; }
Property Value
Type | Description |
---|---|
double? |
MinRelativeProgress
When early_stop is true, stops training when accuracy improvement is less than 'min_relative_progress'. Used only for iterative training algorithms.
Declaration
[JsonProperty("minRelativeProgress")]
public virtual double? MinRelativeProgress { get; set; }
Property Value
Type | Description |
---|---|
double? |
MinSplitLoss
Minimum split loss for boosted tree models.
Declaration
[JsonProperty("minSplitLoss")]
public virtual double? MinSplitLoss { get; set; }
Property Value
Type | Description |
---|---|
double? |
MinTimeSeriesLength
The minimum number of time points in a time series that are used in modeling the trend component of the time
series. If you use this option you must also set the timeSeriesLengthFraction
option. This training option
ensures that enough time points are available when you use timeSeriesLengthFraction
in trend modeling.
This is particularly important when forecasting multiple time series in a single query using
timeSeriesIdColumn
. If the total number of time points is less than the minTimeSeriesLength
value, then
the query uses all available time points.
Declaration
[JsonProperty("minTimeSeriesLength")]
public virtual long? MinTimeSeriesLength { get; set; }
Property Value
Type | Description |
---|---|
long? |
MinTreeChildWeight
Minimum sum of instance weight needed in a child for boosted tree models.
Declaration
[JsonProperty("minTreeChildWeight")]
public virtual long? MinTreeChildWeight { get; set; }
Property Value
Type | Description |
---|---|
long? |
ModelRegistry
The model registry.
Declaration
[JsonProperty("modelRegistry")]
public virtual string ModelRegistry { get; set; }
Property Value
Type | Description |
---|---|
string |
ModelUri
Google Cloud Storage URI from which the model was imported. Only applicable for imported models.
Declaration
[JsonProperty("modelUri")]
public virtual string ModelUri { get; set; }
Property Value
Type | Description |
---|---|
string |
NonSeasonalOrder
A specification of the non-seasonal part of the ARIMA model: the three components (p, d, q) are the AR order, the degree of differencing, and the MA order.
Declaration
[JsonProperty("nonSeasonalOrder")]
public virtual ArimaOrder NonSeasonalOrder { get; set; }
Property Value
Type | Description |
---|---|
ArimaOrder |
NumClusters
Number of clusters for clustering models.
Declaration
[JsonProperty("numClusters")]
public virtual long? NumClusters { get; set; }
Property Value
Type | Description |
---|---|
long? |
NumFactors
Num factors specified for matrix factorization models.
Declaration
[JsonProperty("numFactors")]
public virtual long? NumFactors { get; set; }
Property Value
Type | Description |
---|---|
long? |
NumParallelTree
Number of parallel trees constructed during each iteration for boosted tree models.
Declaration
[JsonProperty("numParallelTree")]
public virtual long? NumParallelTree { get; set; }
Property Value
Type | Description |
---|---|
long? |
NumPrincipalComponents
Number of principal components to keep in the PCA model. Must be <= the number of features.
Declaration
[JsonProperty("numPrincipalComponents")]
public virtual long? NumPrincipalComponents { get; set; }
Property Value
Type | Description |
---|---|
long? |
NumTrials
Number of trials to run this hyperparameter tuning job.
Declaration
[JsonProperty("numTrials")]
public virtual long? NumTrials { get; set; }
Property Value
Type | Description |
---|---|
long? |
OptimizationStrategy
Optimization strategy for training linear regression models.
Declaration
[JsonProperty("optimizationStrategy")]
public virtual string OptimizationStrategy { get; set; }
Property Value
Type | Description |
---|---|
string |
Optimizer
Optimizer used for training the neural nets.
Declaration
[JsonProperty("optimizer")]
public virtual string Optimizer { get; set; }
Property Value
Type | Description |
---|---|
string |
PcaExplainedVarianceRatio
The minimum ratio of cumulative explained variance that needs to be given by the PCA model.
Declaration
[JsonProperty("pcaExplainedVarianceRatio")]
public virtual double? PcaExplainedVarianceRatio { get; set; }
Property Value
Type | Description |
---|---|
double? |
PcaSolver
The solver for PCA.
Declaration
[JsonProperty("pcaSolver")]
public virtual string PcaSolver { get; set; }
Property Value
Type | Description |
---|---|
string |
SampledShapleyNumPaths
Number of paths for the sampled Shapley explain method.
Declaration
[JsonProperty("sampledShapleyNumPaths")]
public virtual long? SampledShapleyNumPaths { get; set; }
Property Value
Type | Description |
---|---|
long? |
ScaleFeatures
If true, scale the feature values by dividing the feature standard deviation. Currently only apply to PCA.
Declaration
[JsonProperty("scaleFeatures")]
public virtual bool? ScaleFeatures { get; set; }
Property Value
Type | Description |
---|---|
bool? |
StandardizeFeatures
Whether to standardize numerical features. Default to true.
Declaration
[JsonProperty("standardizeFeatures")]
public virtual bool? StandardizeFeatures { get; set; }
Property Value
Type | Description |
---|---|
bool? |
Subsample
Subsample fraction of the training data to grow tree to prevent overfitting for boosted tree models.
Declaration
[JsonProperty("subsample")]
public virtual double? Subsample { get; set; }
Property Value
Type | Description |
---|---|
double? |
TfVersion
Based on the selected TF version, the corresponding docker image is used to train external models.
Declaration
[JsonProperty("tfVersion")]
public virtual string TfVersion { get; set; }
Property Value
Type | Description |
---|---|
string |
TimeSeriesDataColumn
Column to be designated as time series data for ARIMA model.
Declaration
[JsonProperty("timeSeriesDataColumn")]
public virtual string TimeSeriesDataColumn { get; set; }
Property Value
Type | Description |
---|---|
string |
TimeSeriesIdColumn
The time series id column that was used during ARIMA model training.
Declaration
[JsonProperty("timeSeriesIdColumn")]
public virtual string TimeSeriesIdColumn { get; set; }
Property Value
Type | Description |
---|---|
string |
TimeSeriesIdColumns
The time series id columns that were used during ARIMA model training.
Declaration
[JsonProperty("timeSeriesIdColumns")]
public virtual IList<string> TimeSeriesIdColumns { get; set; }
Property Value
Type | Description |
---|---|
IList<string> |
TimeSeriesLengthFraction
The fraction of the interpolated length of the time series that's used to model the time series trend
component. All of the time points of the time series are used to model the non-trend component. This
training option accelerates modeling training without sacrificing much forecasting accuracy. You can use
this option with minTimeSeriesLength
but not with maxTimeSeriesLength
.
Declaration
[JsonProperty("timeSeriesLengthFraction")]
public virtual double? TimeSeriesLengthFraction { get; set; }
Property Value
Type | Description |
---|---|
double? |
TimeSeriesTimestampColumn
Column to be designated as time series timestamp for ARIMA model.
Declaration
[JsonProperty("timeSeriesTimestampColumn")]
public virtual string TimeSeriesTimestampColumn { get; set; }
Property Value
Type | Description |
---|---|
string |
TreeMethod
Tree construction algorithm for boosted tree models.
Declaration
[JsonProperty("treeMethod")]
public virtual string TreeMethod { get; set; }
Property Value
Type | Description |
---|---|
string |
TrendSmoothingWindowSize
Smoothing window size for the trend component. When a positive value is specified, a center moving average smoothing is applied on the history trend. When the smoothing window is out of the boundary at the beginning or the end of the trend, the first element or the last element is padded to fill the smoothing window before the average is applied.
Declaration
[JsonProperty("trendSmoothingWindowSize")]
public virtual long? TrendSmoothingWindowSize { get; set; }
Property Value
Type | Description |
---|---|
long? |
UserColumn
User column specified for matrix factorization models.
Declaration
[JsonProperty("userColumn")]
public virtual string UserColumn { get; set; }
Property Value
Type | Description |
---|---|
string |
VertexAiModelVersionAliases
The version aliases to apply in Vertex AI model registry. Always overwrite if the version aliases exists in a existing model.
Declaration
[JsonProperty("vertexAiModelVersionAliases")]
public virtual IList<string> VertexAiModelVersionAliases { get; set; }
Property Value
Type | Description |
---|---|
IList<string> |
WalsAlpha
Hyperparameter for matrix factoration when implicit feedback type is specified.
Declaration
[JsonProperty("walsAlpha")]
public virtual double? WalsAlpha { get; set; }
Property Value
Type | Description |
---|---|
double? |
WarmStart
Whether to train a model from the last checkpoint.
Declaration
[JsonProperty("warmStart")]
public virtual bool? WarmStart { get; set; }
Property Value
Type | Description |
---|---|
bool? |
XgboostVersion
User-selected XGBoost versions for training of XGBoost models.
Declaration
[JsonProperty("xgboostVersion")]
public virtual string XgboostVersion { get; set; }
Property Value
Type | Description |
---|---|
string |