Namespace Google.Apis.CloudNaturalLanguage.v1.Data
Classes
AnalyzeEntitiesRequest
The entity analysis request message.
AnalyzeEntitiesResponse
The entity analysis response message.
AnalyzeEntitySentimentRequest
The entity-level sentiment analysis request message.
AnalyzeEntitySentimentResponse
The entity-level sentiment analysis response message.
AnalyzeSentimentRequest
The sentiment analysis request message.
AnalyzeSentimentResponse
The sentiment analysis response message.
AnalyzeSyntaxRequest
The syntax analysis request message.
AnalyzeSyntaxResponse
The syntax analysis response message.
AnnotateTextRequest
The request message for the text annotation API, which can perform multiple analysis types (sentiment, entities, and syntax) in one call.
AnnotateTextRequestFeatures
All available features for sentiment, syntax, and semantic analysis. Setting each one to true will enable that specific analysis for the input.
AnnotateTextResponse
The text annotations response message.
ClassificationCategory
Represents a category returned from the text classifier.
ClassificationModelOptions
Model options available for classification requests.
ClassificationModelOptionsV1Model
Options for the V1 model.
ClassificationModelOptionsV2Model
Options for the V2 model.
ClassifyTextRequest
The document classification request message.
ClassifyTextResponse
The document classification response message.
Color
Represents a color in the RGBA color space. This representation is designed for simplicity of conversion to and
from color representations in various languages over compactness. For example, the fields of this representation
can be trivially provided to the constructor of java.awt.Color
in Java; it can also be trivially provided to
UIColor's +colorWithRed:green:blue:alpha
method in iOS; and, with just a little work, it can be easily
formatted into a CSS rgba()
string in JavaScript. This reference page doesn't have information about the
absolute color space that should be used to interpret the RGB value—for example, sRGB, Adobe RGB, DCI-P3, and
BT.2020. By default, applications should assume the sRGB color space. When color equality needs to be decided,
implementations, unless documented otherwise, treat two colors as equal if all their red, green, blue, and alpha
values each differ by at most 1e-5
. Example (Java): import com.google.type.Color; // ... public static
java.awt.Color fromProto(Color protocolor) { float alpha = protocolor.hasAlpha() ?
protocolor.getAlpha().getValue() : 1.0; return new java.awt.Color( protocolor.getRed(), protocolor.getGreen(),
protocolor.getBlue(), alpha); } public static Color toProto(java.awt.Color color) { float red = (float)
color.getRed(); float green = (float) color.getGreen(); float blue = (float) color.getBlue(); float denominator
= 255.0; Color.Builder resultBuilder = Color .newBuilder() .setRed(red / denominator) .setGreen(green /
denominator) .setBlue(blue / denominator); int alpha = color.getAlpha(); if (alpha != 255) { result.setAlpha(
FloatValue .newBuilder() .setValue(((float) alpha) / denominator) .build()); } return resultBuilder.build(); }
// ... Example (iOS / Obj-C): // ... static UIColor* fromProto(Color* protocolor) { float red = [protocolor
red]; float green = [protocolor green]; float blue = [protocolor blue]; FloatValue* alpha_wrapper = [protocolor
alpha]; float alpha = 1.0; if (alpha_wrapper != nil) { alpha = [alpha_wrapper value]; } return [UIColor
colorWithRed:red green:green blue:blue alpha:alpha]; } static Color* toProto(UIColor* color) { CGFloat red,
green, blue, alpha; if (![color getRed:&red green:&green blue:&blue
alpha:&alpha]) { return nil; } Color* result = [[Color alloc] init]; [result setRed:red]; [result
setGreen:green]; [result setBlue:blue]; if (alpha <= 0.9999) { [result
setAlpha:floatWrapperWithValue(alpha)]; } [result autorelease]; return result; } // ... Example (JavaScript): //
... var protoToCssColor = function(rgb_color) { var redFrac = rgb_color.red || 0.0; var greenFrac =
rgb_color.green || 0.0; var blueFrac = rgb_color.blue || 0.0; var red = Math.floor(redFrac * 255); var green =
Math.floor(greenFrac * 255); var blue = Math.floor(blueFrac * 255); if (!('alpha' in rgb_color)) { return
rgbToCssColor(red, green, blue); } var alphaFrac = rgb_color.alpha.value || 0.0; var rgbParams = [red, green,
blue].join(','); return ['rgba(', rgbParams, ',', alphaFrac, ')'].join(''); }; var rgbToCssColor = function(red,
green, blue) { var rgbNumber = new Number((red << 16) | (green << 8) | blue); var
hexString = rgbNumber.toString(16); var missingZeros = 6 - hexString.length; var resultBuilder = ['#']; for (var
i = 0; i < missingZeros; i++) { resultBuilder.push('0'); } resultBuilder.push(hexString); return
resultBuilder.join(''); }; // ...
CpuMetric
Metric for billing reports.
DependencyEdge
Represents dependency parse tree information for a token. (For more information on dependency labels, see http://www.aclweb.org/anthology/P13-2017
DiskMetric
Document
Represents the input to API methods.
Entity
Represents a phrase in the text that is a known entity, such as a person, an organization, or location. The API associates information, such as salience and mentions, with entities.
EntityMention
Represents a mention for an entity in the text. Currently, proper noun mentions are supported.
GpuMetric
InfraUsage
Infra Usage of billing metrics.
ModerateTextRequest
The document moderation request message.
ModerateTextResponse
The document moderation response message.
PartOfSpeech
Represents part of speech information for a token. Parts of speech are as defined in http://www.lrec-conf.org/proceedings/lrec2012/pdf/274_Paper.pdf
RamMetric
Sentence
Represents a sentence in the input document.
Sentiment
Represents the feeling associated with the entire text or entities in the text.
Status
The Status
type defines a logical error model that is suitable for different programming environments,
including REST APIs and RPC APIs. It is used by gRPC. Each Status
message contains
three pieces of data: error code, error message, and error details. You can find out more about this error model
and how to work with it in the API Design Guide.
TextSpan
Represents a text span in the input document.
Token
Represents the smallest syntactic building block of the text.
TpuMetric
XPSArrayStats
The data statistics of a series of ARRAY values.
XPSBatchPredictResponse
XPSBoundingBoxMetricsEntry
Bounding box matching model metrics for a single intersection-over-union threshold and multiple label match confidence thresholds.
XPSBoundingBoxMetricsEntryConfidenceMetricsEntry
Metrics for a single confidence threshold.
XPSCategoryStats
The data statistics of a series of CATEGORY values.
XPSCategoryStatsSingleCategoryStats
The statistics of a single CATEGORY value.
XPSClassificationEvaluationMetrics
Model evaluation metrics for classification problems. It can be used for image and video classification. Next tag: 9.
XPSColorMap
Map from color to display name. Will only be used by Image Segmentation for uCAIP.
XPSColorMapIntColor
RGB color and each channel is represented by an integer.
XPSColumnSpec
XPSColumnSpecCorrelatedColumn
Identifies a table's column, and its correlation with the column this ColumnSpec describes.
XPSColumnSpecForecastingMetadata
XPSCommonStats
Common statistics for a column with a specified data type.
XPSConfidenceMetricsEntry
ConfidenceMetricsEntry includes generic precision, recall, f1 score etc. Next tag: 16.
XPSConfusionMatrix
Confusion matrix of the model running the classification.
XPSConfusionMatrixRow
A row in the confusion matrix.
XPSCoreMlFormat
A model format used for iOS mobile devices.
XPSCorrelationStats
A correlation statistics between two series of DataType values. The series may have differing DataType-s, but within a single series the DataType must be the same.
XPSDataErrors
Different types of errors and the stats associatesd with each error.
XPSDataStats
The data statistics of a series of values that share the same DataType.
XPSDataType
Indicated the type of data that can be stored in a structured data entity (e.g. a table).
XPSDockerFormat
A model format used for Docker containers. Use the params field to customize the container. The container is verified to work correctly on ubuntu 16.04 operating system.
XPSEdgeTpuTfLiteFormat
A model format used for Edge TPU devices.
XPSEvaluationMetrics
Contains xPS-specific model evaluation metrics either for a single annotation spec (label), or for the model overall. Next tag: 18.
XPSEvaluationMetricsSet
Specifies location of model evaluation metrics.
XPSExampleSet
Set of examples or input sources.
XPSExportModelOutputConfig
XPSFileSpec
Spec of input and output files, on external file systems (for example, Colossus Namespace System or Google Cloud Storage).
XPSFloat64Stats
The data statistics of a series of FLOAT64 values.
XPSFloat64StatsHistogramBucket
A bucket of a histogram.
XPSImageClassificationTrainResponse
XPSImageExportModelSpec
Information of downloadable models that are pre-generated as part of training flow and will be persisted in AutoMl backend. Upon receiving ExportModel request from user, AutoMl backend can serve the pre-generated models to user if exists (by copying the files from internal path to user provided location), otherwise, AutoMl backend will call xPS ExportModel API to generate the model on the fly with the requesting format.
XPSImageModelArtifactSpec
Stores the locations and related metadata of the model artifacts. Populated for uCAIP requests only.
XPSImageModelServingSpec
Serving specification for image models.
XPSImageModelServingSpecModelThroughputEstimation
XPSImageObjectDetectionEvaluationMetrics
Model evaluation metrics for image object detection problems. Evaluates prediction quality of labeled bounding boxes.
XPSImageObjectDetectionModelSpec
XPSImageSegmentationEvaluationMetrics
Model evaluation metrics for image segmentation problems. Next tag: 4.
XPSImageSegmentationEvaluationMetricsConfidenceMetricsEntry
Metrics for a single confidence threshold.
XPSImageSegmentationTrainResponse
XPSIntegratedGradientsAttribution
An attribution method that computes the Aumann-Shapley value taking advantage of the model's fully differentiable structure. Refer to this paper for more details: https://arxiv.org/abs/1703.01365
XPSMetricEntry
XPSMetricEntryLabel
XPSModelArtifactItem
A single model artifact item.
XPSPreprocessResponse
XPSRegressionEvaluationMetrics
Model evaluation metrics for regression problems. It can be used for Tables.
XPSRegressionMetricsEntry
A pair of actual & observed values for the model being evaluated.
XPSReportingMetrics
XPSResponseExplanationMetadata
XPSResponseExplanationMetadataInputMetadata
Metadata of the input of a feature.
XPSResponseExplanationMetadataOutputMetadata
Metadata of the prediction output to be explained.
XPSResponseExplanationParameters
XPSResponseExplanationSpec
Specification of Model explanation. Feature-based XAI in AutoML Vision ICN is deprecated.
XPSRow
XPSSpeechEvaluationMetrics
XPSSpeechEvaluationMetricsSubModelEvaluationMetric
XPSSpeechModelSpec
XPSSpeechModelSpecSubModelSpec
XPSSpeechPreprocessResponse
XPSSpeechPreprocessStats
XPSStringStats
The data statistics of a series of STRING values.
XPSStringStatsUnigramStats
The statistics of a unigram.
XPSStructStats
The data statistics of a series of STRUCT values.
XPSStructType
StructType
defines the DataType-s of a STRUCT type.
XPSTableSpec
XPSTablesClassificationMetrics
Metrics for Tables classification problems.
XPSTablesClassificationMetricsCurveMetrics
Metrics curve data point for a single value.
XPSTablesConfidenceMetricsEntry
Metrics for a single confidence threshold.
XPSTablesDatasetMetadata
Metadata for a dataset used for AutoML Tables.
XPSTablesEvaluationMetrics
XPSTablesModelColumnInfo
An information specific to given column and Tables Model, in context of the Model and the predictions created by it.
XPSTablesModelStructure
A description of Tables model structure.
XPSTablesModelStructureModelParameters
Model hyper-parameters for a model.
XPSTablesModelStructureModelParametersParameter
XPSTablesPreprocessResponse
XPSTablesRegressionMetrics
Metrics for Tables regression problems.
XPSTablesTrainResponse
XPSTablesTrainingOperationMetadata
XPSTextComponentModel
Component model.
XPSTextExtractionEvaluationMetrics
XPSTextSentimentEvaluationMetrics
Model evaluation metrics for text sentiment problems.
XPSTextToSpeechTrainResponse
TextToSpeech train response
XPSTextTrainResponse
XPSTfJsFormat
A TensorFlow.js model that can be used in the browser and in Node.js using JavaScript.
XPSTfLiteFormat
LINT.IfChange A model format used for mobile and IoT devices. See https://www.tensorflow.org/lite.
XPSTfSavedModelFormat
A tensorflow model format in SavedModel format.
XPSTimestampStats
The data statistics of a series of TIMESTAMP values.
XPSTimestampStatsGranularStats
Stats split by a defined in context granularity.
XPSTrackMetricsEntry
Track matching model metrics for a single track match threshold and multiple label match confidence thresholds. Next tag: 6.
XPSTrackMetricsEntryConfidenceMetricsEntry
Metrics for a single confidence threshold. Next tag: 6.
XPSTrainResponse
XPSTrainingObjectivePoint
XPSTranslationEvaluationMetrics
Evaluation metrics for the dataset.
XPSTranslationPreprocessResponse
Translation preprocess response.
XPSTranslationTrainResponse
Train response for translation.
XPSTuningTrial
Metrics for a tuning job generated, will get forwarded to Stackdriver as model tuning logs. Setting this as a standalone message out of CreateModelMetadata to avoid confusion as we expose this message only to users.
XPSVideoActionMetricsEntry
The Evaluation metrics entry given a specific precision_window_length.
XPSVideoActionMetricsEntryConfidenceMetricsEntry
Metrics for a single confidence threshold.
XPSVideoActionRecognitionEvaluationMetrics
Model evaluation metrics for video action recognition.
XPSVideoActionRecognitionTrainResponse
XPSVideoBatchPredictOperationMetadata
XPSVideoClassificationTrainResponse
XPSVideoExportModelSpec
Information of downloadable models that are pre-generated as part of training flow and will be persisted in AutoMl backend. Upon receiving ExportModel request from user, AutoMl backend can serve the pre-generated models to user if exists (by copying the files from internal path to user provided location), otherwise, AutoMl backend will call xPS ExportModel API to generate the model on the fly with the requesting format.
XPSVideoModelArtifactSpec
XPSVideoObjectTrackingEvaluationMetrics
Model evaluation metrics for ObjectTracking problems. Next tag: 10.
XPSVideoObjectTrackingTrainResponse
XPSVideoTrainingOperationMetadata
XPSVisionErrorAnalysisConfig
The vision model error analysis configuration. Next tag: 3
XPSVisionTrainingOperationMetadata
XPSVisualization
Visualization configurations for image explanation.
XPSXpsOperationMetadata
XPSXraiAttribution
An explanation method that redistributes Integrated Gradients attributions to segmented regions, taking advantage of the model's fully differentiable structure. Refer to this paper for more details: https://arxiv.org/abs/1906.02825 Only supports image Models (modality is IMAGE).