Class GoogleCloudDialogflowV2beta1InferenceParameter
The parameters of inference.
Implements
Inherited Members
Namespace: Google.Apis.Dialogflow.v2beta1.Data
Assembly: Google.Apis.Dialogflow.v2beta1.dll
Syntax
public class GoogleCloudDialogflowV2beta1InferenceParameter : IDirectResponseSchema
Properties
ETag
The ETag of the item.
Declaration
public virtual string ETag { get; set; }
Property Value
Type | Description |
---|---|
string |
MaxOutputTokens
Optional. Maximum number of the output tokens for the generator.
Declaration
[JsonProperty("maxOutputTokens")]
public virtual int? MaxOutputTokens { get; set; }
Property Value
Type | Description |
---|---|
int? |
Temperature
Optional. Controls the randomness of LLM predictions. Low temperature = less random. High temperature = more random. If unset (or 0), uses a default value of 0.
Declaration
[JsonProperty("temperature")]
public virtual double? Temperature { get; set; }
Property Value
Type | Description |
---|---|
double? |
TopK
Optional. Top-k changes how the model selects tokens for output. A top-k of 1 means the selected token is the most probable among all tokens in the model's vocabulary (also called greedy decoding), while a top-k of 3 means that the next token is selected from among the 3 most probable tokens (using temperature). For each token selection step, the top K tokens with the highest probabilities are sampled. Then tokens are further filtered based on topP with the final token selected using temperature sampling. Specify a lower value for less random responses and a higher value for more random responses. Acceptable value is [1, 40], default to 40.
Declaration
[JsonProperty("topK")]
public virtual int? TopK { get; set; }
Property Value
Type | Description |
---|---|
int? |
TopP
Optional. Top-p changes how the model selects tokens for output. Tokens are selected from most K (see topK parameter) probable to least until the sum of their probabilities equals the top-p value. For example, if tokens A, B, and C have a probability of 0.3, 0.2, and 0.1 and the top-p value is 0.5, then the model will select either A or B as the next token (using temperature) and doesn't consider C. The default top-p value is 0.95. Specify a lower value for less random responses and a higher value for more random responses. Acceptable value is [0.0, 1.0], default to 0.95.
Declaration
[JsonProperty("topP")]
public virtual double? TopP { get; set; }
Property Value
Type | Description |
---|---|
double? |