Type Definitions
Any
Any contains an arbitrary serialized protocol buffer message along with a
URL that describes the type of the serialized message.
Protobuf library provides support to pack/unpack Any values in the form of utility functions or additional generated methods of the Any type.
Example 1: Pack and unpack a message in C++.
Foo foo = ...;
Any any;
any.PackFrom(foo);
...
if (any.UnpackTo(&foo)) {
...
}
Example 2: Pack and unpack a message in Java.
Foo foo = ...;
Any any = Any.pack(foo);
...
if (any.is(Foo.class)) {
foo = any.unpack(Foo.class);
}
Example 3: Pack and unpack a message in Python.
foo = Foo(...)
any = Any()
any.Pack(foo)
...
if any.Is(Foo.DESCRIPTOR):
any.Unpack(foo)
...
Example 4: Pack and unpack a message in Go
foo := &pb.Foo{...}
any, err := ptypes.MarshalAny(foo)
...
foo := &pb.Foo{}
if err := ptypes.UnmarshalAny(any, foo); err != nil {
...
}
The pack methods provided by protobuf library will by default use 'type.googleapis.com/full.type.name' as the type URL and the unpack methods only use the fully qualified type name after the last '/' in the type URL, for example "foo.bar.com/x/y.z" will yield type name "y.z".
JSON
The JSON representation of an Any value uses the regular
representation of the deserialized, embedded message, with an
additional field @type which contains the type URL. Example:
package google.profile;
message Person {
string first_name = 1;
string last_name = 2;
}
{
"@type": "type.googleapis.com/google.profile.Person",
"firstName": <string>,
"lastName": <string>
}
If the embedded message type is well-known and has a custom JSON
representation, that representation will be embedded adding a field
value which holds the custom JSON in addition to the @type
field. Example (for message google.protobuf.Duration):
{
"@type": "type.googleapis.com/google.protobuf.Duration",
"value": "1.212s"
}
Properties:
| Name | Type | Description |
|---|---|---|
typeUrl |
string |
A URL/resource name that uniquely identifies the type of the serialized
protocol buffer message. This string must contain at least
one "/" character. The last segment of the URL's path must represent
the fully qualified name of the type (as in
In practice, teams usually precompile into the binary all types that they
expect it to use in the context of Any. However, for URLs which use the
scheme
Note: this functionality is not currently available in the official protobuf release, and it is not used for type URLs beginning with type.googleapis.com. Schemes other than |
value |
Buffer |
Must be a valid serialized protocol buffer of the above specified type. |
- Source:
- See:
Timestamp
A Timestamp represents a point in time independent of any time zone or local calendar, encoded as a count of seconds and fractions of seconds at nanosecond resolution. The count is relative to an epoch at UTC midnight on January 1, 1970, in the proleptic Gregorian calendar which extends the Gregorian calendar backwards to year one.
All minutes are 60 seconds long. Leap seconds are "smeared" so that no leap second table is needed for interpretation, using a 24-hour linear smear.
The range is from 0001-01-01T00:00:00Z to 9999-12-31T23:59:59.999999999Z. By restricting to that range, we ensure that we can convert to and from RFC 3339 date strings.
Examples
Example 1: Compute Timestamp from POSIX time().
Timestamp timestamp;
timestamp.set_seconds(time(NULL));
timestamp.set_nanos(0);
Example 2: Compute Timestamp from POSIX gettimeofday().
struct timeval tv;
gettimeofday(&tv, NULL);
Timestamp timestamp;
timestamp.set_seconds(tv.tv_sec);
timestamp.set_nanos(tv.tv_usec * 1000);
Example 3: Compute Timestamp from Win32 GetSystemTimeAsFileTime().
FILETIME ft;
GetSystemTimeAsFileTime(&ft);
UINT64 ticks = (((UINT64)ft.dwHighDateTime) << 32) | ft.dwLowDateTime;
// A Windows tick is 100 nanoseconds. Windows epoch 1601-01-01T00:00:00Z
// is 11644473600 seconds before Unix epoch 1970-01-01T00:00:00Z.
Timestamp timestamp;
timestamp.set_seconds((INT64) ((ticks / 10000000) - 11644473600LL));
timestamp.set_nanos((INT32) ((ticks % 10000000) * 100));
Example 4: Compute Timestamp from Java System.currentTimeMillis().
long millis = System.currentTimeMillis();
Timestamp timestamp = Timestamp.newBuilder().setSeconds(millis / 1000)
.setNanos((int) ((millis % 1000) * 1000000)).build();
Example 5: Compute Timestamp from current time in Python.
timestamp = Timestamp()
timestamp.GetCurrentTime()
JSON Mapping
In JSON format, the Timestamp type is encoded as a string in the RFC 3339 format. That is, the format is "{year}-{month}-{day}T{hour}:{min}:{sec}[.{frac_sec}]Z" where {year} is always expressed using four digits while {month}, {day}, {hour}, {min}, and {sec} are zero-padded to two digits each. The fractional seconds, which can go up to 9 digits (i.e. up to 1 nanosecond resolution), are optional. The "Z" suffix indicates the timezone ("UTC"); the timezone is required. A proto3 JSON serializer should always use UTC (as indicated by "Z") when printing the Timestamp type and a proto3 JSON parser should be able to accept both UTC and other timezones (as indicated by an offset).
For example, "2017-01-15T01:30:15.01Z" encodes 15.01 seconds past 01:30 UTC on January 15, 2017.
In JavaScript, one can convert a Date object to this format using the
standard
toISOString()
method. In Python, a standard datetime.datetime object can be converted
to this format using
strftime with
the time format spec '%Y-%m-%dT%H:%M:%S.%fZ'. Likewise, in Java, one can use
the Joda Time's ISODateTimeFormat.dateTime() to obtain a formatter capable of generating timestamps in this format.
Properties:
| Name | Type | Description |
|---|---|---|
seconds |
number |
Represents seconds of UTC time since Unix epoch 1970-01-01T00:00:00Z. Must be from 0001-01-01T00:00:00Z to 9999-12-31T23:59:59Z inclusive. |
nanos |
number |
Non-negative fractions of a second at nanosecond resolution. Negative second values with fractions must still have non-negative nanos values that count forward in time. Must be from 0 to 999,999,999 inclusive. |