As of January 1, 2020 this library no longer supports Python 2 on the latest released version.
Library versions released prior to that date will continue to be available. For more information please
visit Python 2 support on Google Cloud.
Source code for google.cloud.bigquery.magics.magics
# Copyright 2018 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""IPython Magics
.. function:: %%bigquery
IPython cell magic to run a query and display the result as a DataFrame
.. code-block:: python
%%bigquery [<destination_var>] [--project <project>] [--use_legacy_sql]
[--verbose] [--params <params>]
<query>
Parameters:
* ``<destination_var>`` (Optional[line argument]):
variable to store the query results. The results are not displayed if
this parameter is used. If an error occurs during the query execution,
the corresponding ``QueryJob`` instance (if available) is stored in
the variable instead.
* ``--destination_table`` (Optional[line argument]):
A dataset and table to store the query results. If table does not exists,
it will be created. If table already exists, its data will be overwritten.
Variable should be in a format <dataset_id>.<table_id>.
* ``--no_query_cache`` (Optional[line argument]):
Do not use cached query results.
* ``--project <project>`` (Optional[line argument]):
Project to use for running the query. Defaults to the context
:attr:`~google.cloud.bigquery.magics.Context.project`.
* ``--use_bqstorage_api`` (Optional[line argument]):
[Deprecated] Not used anymore, as BigQuery Storage API is used by default.
* ``--use_rest_api`` (Optional[line argument]):
Use the BigQuery REST API instead of the Storage API.
* ``--use_legacy_sql`` (Optional[line argument]):
Runs the query using Legacy SQL syntax. Defaults to Standard SQL if
this argument not used.
* ``--verbose`` (Optional[line argument]):
If this flag is used, information including the query job ID and the
amount of time for the query to complete will not be cleared after the
query is finished. By default, this information will be displayed but
will be cleared after the query is finished.
* ``--params <params>`` (Optional[line argument]):
If present, the argument following the ``--params`` flag must be
either:
* :class:`str` - A JSON string representation of a dictionary in the
format ``{"param_name": "param_value"}`` (ex. ``{"num": 17}``). Use
of the parameter in the query should be indicated with
``@param_name``. See ``In[5]`` in the Examples section below.
* :class:`dict` reference - A reference to a ``dict`` in the format
``{"param_name": "param_value"}``, where the value types must be JSON
serializable. The variable reference is indicated by a ``$`` before
the variable name (ex. ``$my_dict_var``). See ``In[6]`` and ``In[7]``
in the Examples section below.
* ``<query>`` (required, cell argument):
SQL query to run. If the query does not contain any whitespace (aside
from leading and trailing whitespace), it is assumed to represent a
fully-qualified table ID, and the latter's data will be fetched.
Returns:
A :class:`pandas.DataFrame` with the query results.
.. note::
All queries run using this magic will run using the context
:attr:`~google.cloud.bigquery.magics.Context.credentials`.
"""
from __future__ import print_function
import re
import ast
import copy
import functools
import sys
import time
import warnings
from concurrent import futures
try:
import IPython # type: ignore
from IPython import display # type: ignore
from IPython.core import magic_arguments # type: ignore
except ImportError:
raise ImportError("This module can only be loaded in IPython.")
from google.api_core import client_info
from google.api_core import client_options
from google.api_core.exceptions import NotFound
import google.auth # type: ignore
from google.cloud import bigquery
import google.cloud.bigquery.dataset
from google.cloud.bigquery import _versions_helpers
from google.cloud.bigquery import exceptions
from google.cloud.bigquery.dbapi import _helpers
from google.cloud.bigquery.magics import line_arg_parser as lap
IPYTHON_USER_AGENT = "ipython-{}".format(IPython.__version__)
[docs]class Context(object):
"""Storage for objects to be used throughout an IPython notebook session.
A Context object is initialized when the ``magics`` module is imported,
and can be found at ``google.cloud.bigquery.magics.context``.
"""
def __init__(self):
self._credentials = None
self._project = None
self._connection = None
self._default_query_job_config = bigquery.QueryJobConfig()
self._bigquery_client_options = client_options.ClientOptions()
self._bqstorage_client_options = client_options.ClientOptions()
self._progress_bar_type = "tqdm_notebook"
@property
def credentials(self):
"""google.auth.credentials.Credentials: Credentials to use for queries
performed through IPython magics.
Note:
These credentials do not need to be explicitly defined if you are
using Application Default Credentials. If you are not using
Application Default Credentials, manually construct a
:class:`google.auth.credentials.Credentials` object and set it as
the context credentials as demonstrated in the example below. See
`auth docs`_ for more information on obtaining credentials.
Example:
Manually setting the context credentials:
>>> from google.cloud.bigquery import magics
>>> from google.oauth2 import service_account
>>> credentials = (service_account
... .Credentials.from_service_account_file(
... '/path/to/key.json'))
>>> magics.context.credentials = credentials
.. _auth docs: http://google-auth.readthedocs.io
/en/latest/user-guide.html#obtaining-credentials
"""
if self._credentials is None:
self._credentials, _ = google.auth.default()
return self._credentials
@credentials.setter
def credentials(self, value):
self._credentials = value
@property
def project(self):
"""str: Default project to use for queries performed through IPython
magics.
Note:
The project does not need to be explicitly defined if you have an
environment default project set. If you do not have a default
project set in your environment, manually assign the project as
demonstrated in the example below.
Example:
Manually setting the context project:
>>> from google.cloud.bigquery import magics
>>> magics.context.project = 'my-project'
"""
if self._project is None:
_, self._project = google.auth.default()
return self._project
@project.setter
def project(self, value):
self._project = value
@property
def bigquery_client_options(self):
"""google.api_core.client_options.ClientOptions: client options to be
used through IPython magics.
Note::
The client options do not need to be explicitly defined if no
special network connections are required. Normally you would be
using the https://bigquery.googleapis.com/ end point.
Example:
Manually setting the endpoint:
>>> from google.cloud.bigquery import magics
>>> client_options = {}
>>> client_options['api_endpoint'] = "https://some.special.url"
>>> magics.context.bigquery_client_options = client_options
"""
return self._bigquery_client_options
@bigquery_client_options.setter
def bigquery_client_options(self, value):
self._bigquery_client_options = value
@property
def bqstorage_client_options(self):
"""google.api_core.client_options.ClientOptions: client options to be
used through IPython magics for the storage client.
Note::
The client options do not need to be explicitly defined if no
special network connections are required. Normally you would be
using the https://bigquerystorage.googleapis.com/ end point.
Example:
Manually setting the endpoint:
>>> from google.cloud.bigquery import magics
>>> client_options = {}
>>> client_options['api_endpoint'] = "https://some.special.url"
>>> magics.context.bqstorage_client_options = client_options
"""
return self._bqstorage_client_options
@bqstorage_client_options.setter
def bqstorage_client_options(self, value):
self._bqstorage_client_options = value
@property
def default_query_job_config(self):
"""google.cloud.bigquery.job.QueryJobConfig: Default job
configuration for queries.
The context's :class:`~google.cloud.bigquery.job.QueryJobConfig` is
used for queries. Some properties can be overridden with arguments to
the magics.
Example:
Manually setting the default value for ``maximum_bytes_billed``
to 100 MB:
>>> from google.cloud.bigquery import magics
>>> magics.context.default_query_job_config.maximum_bytes_billed = 100000000
"""
return self._default_query_job_config
@default_query_job_config.setter
def default_query_job_config(self, value):
self._default_query_job_config = value
@property
def progress_bar_type(self):
"""str: Default progress bar type to use to display progress bar while
executing queries through IPython magics.
Note::
Install the ``tqdm`` package to use this feature.
Example:
Manually setting the progress_bar_type:
>>> from google.cloud.bigquery import magics
>>> magics.context.progress_bar_type = "tqdm_notebook"
"""
return self._progress_bar_type
@progress_bar_type.setter
def progress_bar_type(self, value):
self._progress_bar_type = value
context = Context()
def _handle_error(error, destination_var=None):
"""Process a query execution error.
Args:
error (Exception):
An exception that occurred during the query execution.
destination_var (Optional[str]):
The name of the IPython session variable to store the query job.
"""
if destination_var:
query_job = getattr(error, "query_job", None)
if query_job is not None:
IPython.get_ipython().push({destination_var: query_job})
else:
# this is the case when previewing table rows by providing just
# table ID to cell magic
print(
"Could not save output to variable '{}'.".format(destination_var),
file=sys.stderr,
)
print("\nERROR:\n", str(error), file=sys.stderr)
def _run_query(client, query, job_config=None):
"""Runs a query while printing status updates
Args:
client (google.cloud.bigquery.client.Client):
Client to bundle configuration needed for API requests.
query (str):
SQL query to be executed. Defaults to the standard SQL dialect.
Use the ``job_config`` parameter to change dialects.
job_config (Optional[google.cloud.bigquery.job.QueryJobConfig]):
Extra configuration options for the job.
Returns:
google.cloud.bigquery.job.QueryJob: the query job created
Example:
>>> client = bigquery.Client()
>>> _run_query(client, "SELECT 17")
Executing query with job ID: bf633912-af2c-4780-b568-5d868058632b
Query executing: 1.66s
Query complete after 2.07s
'bf633912-af2c-4780-b568-5d868058632b'
"""
start_time = time.perf_counter()
query_job = client.query(query, job_config=job_config)
if job_config and job_config.dry_run:
return query_job
print(f"Executing query with job ID: {query_job.job_id}")
while True:
print(
f"\rQuery executing: {time.perf_counter() - start_time:.2f}s".format(),
end="",
)
try:
query_job.result(timeout=0.5)
break
except futures.TimeoutError:
continue
print(f"\nJob ID {query_job.job_id} successfully executed")
return query_job
def _create_dataset_if_necessary(client, dataset_id):
"""Create a dataset in the current project if it doesn't exist.
Args:
client (google.cloud.bigquery.client.Client):
Client to bundle configuration needed for API requests.
dataset_id (str):
Dataset id.
"""
dataset_reference = bigquery.dataset.DatasetReference(client.project, dataset_id)
try:
dataset = client.get_dataset(dataset_reference)
return
except NotFound:
pass
dataset = bigquery.Dataset(dataset_reference)
dataset.location = client.location
print(f"Creating dataset: {dataset_id}")
dataset = client.create_dataset(dataset)
@magic_arguments.magic_arguments()
@magic_arguments.argument(
"destination_var",
nargs="?",
help=("If provided, save the output to this variable instead of displaying it."),
)
@magic_arguments.argument(
"--destination_table",
type=str,
default=None,
help=(
"If provided, save the output of the query to a new BigQuery table. "
"Variable should be in a format <dataset_id>.<table_id>. "
"If table does not exists, it will be created. "
"If table already exists, its data will be overwritten."
),
)
@magic_arguments.argument(
"--project",
type=str,
default=None,
help=("Project to use for executing this query. Defaults to the context project."),
)
@magic_arguments.argument(
"--max_results",
default=None,
help=(
"Maximum number of rows in dataframe returned from executing the query."
"Defaults to returning all rows."
),
)
@magic_arguments.argument(
"--maximum_bytes_billed",
default=None,
help=(
"maximum_bytes_billed to use for executing this query. Defaults to "
"the context default_query_job_config.maximum_bytes_billed."
),
)
@magic_arguments.argument(
"--dry_run",
action="store_true",
default=False,
help=(
"Sets query to be a dry run to estimate costs. "
"Defaults to executing the query instead of dry run if this argument is not used."
),
)
@magic_arguments.argument(
"--use_legacy_sql",
action="store_true",
default=False,
help=(
"Sets query to use Legacy SQL instead of Standard SQL. Defaults to "
"Standard SQL if this argument is not used."
),
)
@magic_arguments.argument(
"--bigquery_api_endpoint",
type=str,
default=None,
help=(
"The desired API endpoint, e.g., bigquery.googlepis.com. Defaults to this "
"option's value in the context bigquery_client_options."
),
)
@magic_arguments.argument(
"--bqstorage_api_endpoint",
type=str,
default=None,
help=(
"The desired API endpoint, e.g., bigquerystorage.googlepis.com. Defaults to "
"this option's value in the context bqstorage_client_options."
),
)
@magic_arguments.argument(
"--no_query_cache",
action="store_true",
default=False,
help=("Do not use cached query results."),
)
@magic_arguments.argument(
"--use_bqstorage_api",
action="store_true",
default=None,
help=(
"[Deprecated] The BigQuery Storage API is already used by default to "
"download large query results, and this option has no effect. "
"If you want to switch to the classic REST API instead, use the "
"--use_rest_api option."
),
)
@magic_arguments.argument(
"--use_rest_api",
action="store_true",
default=False,
help=(
"Use the classic REST API instead of the BigQuery Storage API to "
"download query results."
),
)
@magic_arguments.argument(
"--verbose",
action="store_true",
default=False,
help=(
"If set, print verbose output, including the query job ID and the "
"amount of time for the query to finish. By default, this "
"information will be displayed as the query runs, but will be "
"cleared after the query is finished."
),
)
@magic_arguments.argument(
"--params",
nargs="+",
default=None,
help=(
"Parameters to format the query string. If present, the --params "
"flag should be followed by a string representation of a dictionary "
"in the format {'param_name': 'param_value'} (ex. {\"num\": 17}), "
"or a reference to a dictionary in the same format. The dictionary "
"reference can be made by including a '$' before the variable "
"name (ex. $my_dict_var)."
),
)
@magic_arguments.argument(
"--progress_bar_type",
type=str,
default=None,
help=(
"Sets progress bar type to display a progress bar while executing the query."
"Defaults to use tqdm_notebook. Install the ``tqdm`` package to use this feature."
),
)
@magic_arguments.argument(
"--location",
type=str,
default=None,
help=(
"Set the location to execute query."
"Defaults to location set in query setting in console."
),
)
def _cell_magic(line, query):
"""Underlying function for bigquery cell magic
Note:
This function contains the underlying logic for the 'bigquery' cell
magic. This function is not meant to be called directly.
Args:
line (str): "%%bigquery" followed by arguments as required
query (str): SQL query to run
Returns:
pandas.DataFrame: the query results.
"""
# The built-in parser does not recognize Python structures such as dicts, thus
# we extract the "--params" option and inteprpret it separately.
try:
params_option_value, rest_of_args = _split_args_line(line)
except lap.exceptions.QueryParamsParseError as exc:
rebranded_error = SyntaxError(
"--params is not a correctly formatted JSON string or a JSON "
"serializable dictionary"
)
raise rebranded_error from exc
except lap.exceptions.DuplicateQueryParamsError as exc:
rebranded_error = ValueError("Duplicate --params option.")
raise rebranded_error from exc
except lap.exceptions.ParseError as exc:
rebranded_error = ValueError(
"Unrecognized input, are option values correct? "
"Error details: {}".format(exc.args[0])
)
raise rebranded_error from exc
args = magic_arguments.parse_argstring(_cell_magic, rest_of_args)
if args.use_bqstorage_api is not None:
warnings.warn(
"Deprecated option --use_bqstorage_api, the BigQuery "
"Storage API is already used by default.",
category=DeprecationWarning,
)
use_bqstorage_api = not args.use_rest_api
location = args.location
params = []
if params_option_value:
# A non-existing params variable is not expanded and ends up in the input
# in its raw form, e.g. "$query_params".
if params_option_value.startswith("$"):
msg = 'Parameter expansion failed, undefined variable "{}".'.format(
params_option_value[1:]
)
raise NameError(msg)
params = _helpers.to_query_parameters(ast.literal_eval(params_option_value), {})
project = args.project or context.project
bigquery_client_options = copy.deepcopy(context.bigquery_client_options)
if args.bigquery_api_endpoint:
if isinstance(bigquery_client_options, dict):
bigquery_client_options["api_endpoint"] = args.bigquery_api_endpoint
else:
bigquery_client_options.api_endpoint = args.bigquery_api_endpoint
client = bigquery.Client(
project=project,
credentials=context.credentials,
default_query_job_config=context.default_query_job_config,
client_info=client_info.ClientInfo(user_agent=IPYTHON_USER_AGENT),
client_options=bigquery_client_options,
location=location,
)
if context._connection:
client._connection = context._connection
bqstorage_client_options = copy.deepcopy(context.bqstorage_client_options)
if args.bqstorage_api_endpoint:
if isinstance(bqstorage_client_options, dict):
bqstorage_client_options["api_endpoint"] = args.bqstorage_api_endpoint
else:
bqstorage_client_options.api_endpoint = args.bqstorage_api_endpoint
bqstorage_client = _make_bqstorage_client(
client,
use_bqstorage_api,
bqstorage_client_options,
)
close_transports = functools.partial(_close_transports, client, bqstorage_client)
try:
if args.max_results:
max_results = int(args.max_results)
else:
max_results = None
query = query.strip()
if not query:
error = ValueError("Query is missing.")
_handle_error(error, args.destination_var)
return
# Check if query is given as a reference to a variable.
if query.startswith("$"):
query_var_name = query[1:]
if not query_var_name:
missing_msg = 'Missing query variable name, empty "$" is not allowed.'
raise NameError(missing_msg)
if query_var_name.isidentifier():
ip = IPython.get_ipython()
query = ip.user_ns.get(query_var_name, ip) # ip serves as a sentinel
if query is ip:
raise NameError(
f"Unknown query, variable {query_var_name} does not exist."
)
else:
if not isinstance(query, (str, bytes)):
raise TypeError(
f"Query variable {query_var_name} must be a string "
"or a bytes-like value."
)
# Any query that does not contain whitespace (aside from leading and trailing whitespace)
# is assumed to be a table id
if not re.search(r"\s", query):
try:
rows = client.list_rows(query, max_results=max_results)
except Exception as ex:
_handle_error(ex, args.destination_var)
return
result = rows.to_dataframe(
bqstorage_client=bqstorage_client,
create_bqstorage_client=False,
)
if args.destination_var:
IPython.get_ipython().push({args.destination_var: result})
return
else:
return result
job_config = bigquery.job.QueryJobConfig()
job_config.query_parameters = params
job_config.use_legacy_sql = args.use_legacy_sql
job_config.dry_run = args.dry_run
# Don't override context job config unless --no_query_cache is explicitly set.
if args.no_query_cache:
job_config.use_query_cache = False
if args.destination_table:
split = args.destination_table.split(".")
if len(split) != 2:
raise ValueError(
"--destination_table should be in a <dataset_id>.<table_id> format."
)
dataset_id, table_id = split
job_config.allow_large_results = True
dataset_ref = bigquery.dataset.DatasetReference(client.project, dataset_id)
destination_table_ref = dataset_ref.table(table_id)
job_config.destination = destination_table_ref
job_config.create_disposition = "CREATE_IF_NEEDED"
job_config.write_disposition = "WRITE_TRUNCATE"
_create_dataset_if_necessary(client, dataset_id)
if args.maximum_bytes_billed == "None":
job_config.maximum_bytes_billed = 0
elif args.maximum_bytes_billed is not None:
value = int(args.maximum_bytes_billed)
job_config.maximum_bytes_billed = value
try:
query_job = _run_query(client, query, job_config=job_config)
except Exception as ex:
_handle_error(ex, args.destination_var)
return
if not args.verbose:
display.clear_output()
if args.dry_run and args.destination_var:
IPython.get_ipython().push({args.destination_var: query_job})
return
elif args.dry_run:
print(
"Query validated. This query will process {} bytes.".format(
query_job.total_bytes_processed
)
)
return query_job
progress_bar = context.progress_bar_type or args.progress_bar_type
if max_results:
result = query_job.result(max_results=max_results).to_dataframe(
bqstorage_client=None,
create_bqstorage_client=False,
progress_bar_type=progress_bar,
)
else:
result = query_job.to_dataframe(
bqstorage_client=bqstorage_client,
create_bqstorage_client=False,
progress_bar_type=progress_bar,
)
if args.destination_var:
IPython.get_ipython().push({args.destination_var: result})
else:
return result
finally:
close_transports()
def _split_args_line(line):
"""Split out the --params option value from the input line arguments.
Args:
line (str): The line arguments passed to the cell magic.
Returns:
Tuple[str, str]
"""
lexer = lap.Lexer(line)
scanner = lap.Parser(lexer)
tree = scanner.input_line()
extractor = lap.QueryParamsExtractor()
params_option_value, rest_of_args = extractor.visit(tree)
return params_option_value, rest_of_args
def _make_bqstorage_client(client, use_bqstorage_api, client_options):
"""Creates a BigQuery Storage client.
Args:
client (:class:`~google.cloud.bigquery.client.Client`): BigQuery client.
use_bqstorage_api (bool): whether BigQuery Storage API is used or not.
client_options (:class:`google.api_core.client_options.ClientOptions`):
Custom options used with a new BigQuery Storage client instance
if one is created.
Raises:
ImportError: if google-cloud-bigquery-storage is not installed, or
grpcio package is not installed.
Returns:
None: if ``use_bqstorage_api == False``, or google-cloud-bigquery-storage
is outdated.
BigQuery Storage Client:
"""
if not use_bqstorage_api:
return None
try:
_versions_helpers.BQ_STORAGE_VERSIONS.try_import(raise_if_error=True)
except exceptions.BigQueryStorageNotFoundError as err:
customized_error = ImportError(
"The default BigQuery Storage API client cannot be used, install "
"the missing google-cloud-bigquery-storage and pyarrow packages "
"to use it. Alternatively, use the classic REST API by specifying "
"the --use_rest_api magic option."
)
raise customized_error from err
except exceptions.LegacyBigQueryStorageError:
pass
try:
from google.api_core.gapic_v1 import client_info as gapic_client_info
except ImportError as err:
customized_error = ImportError(
"Install the grpcio package to use the BigQuery Storage API."
)
raise customized_error from err
return client._ensure_bqstorage_client(
client_options=client_options,
client_info=gapic_client_info.ClientInfo(user_agent=IPYTHON_USER_AGENT),
)
def _close_transports(client, bqstorage_client):
"""Close the given clients' underlying transport channels.
Closing the transport is needed to release system resources, namely open
sockets.
Args:
client (:class:`~google.cloud.bigquery.client.Client`):
bqstorage_client
(Optional[:class:`~google.cloud.bigquery_storage.BigQueryReadClient`]):
A client for the BigQuery Storage API.
"""
client.close()
if bqstorage_client is not None:
bqstorage_client._transport.grpc_channel.close()