Types for Google Cloud Datalabeling v1beta1 API¶
- class google.cloud.datalabeling_v1beta1.types.AnnotatedDataset(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
AnnotatedDataset is a set holding annotations for data in a Dataset. Each labeling task will generate an AnnotatedDataset under the Dataset that the task is requested for.
- name¶
Output only. AnnotatedDataset resource name in format of: projects/{project_id}/datasets/{dataset_id}/annotatedDatasets/ {annotated_dataset_id}
- Type
- display_name¶
Output only. The display name of the AnnotatedDataset. It is specified in HumanAnnotationConfig when user starts a labeling task. Maximum of 64 characters.
- Type
- description¶
Output only. The description of the AnnotatedDataset. It is specified in HumanAnnotationConfig when user starts a labeling task. Maximum of 10000 characters.
- Type
- annotation_source¶
Output only. Source of the annotation.
- annotation_type¶
Output only. Type of the annotation. It is specified when starting labeling task.
- completed_example_count¶
Output only. Number of examples that have annotation in the annotated dataset.
- Type
- label_stats¶
Output only. Per label statistics.
- create_time¶
Output only. Time the AnnotatedDataset was created.
- metadata¶
Output only. Additional information about AnnotatedDataset.
- class google.cloud.datalabeling_v1beta1.types.AnnotatedDatasetMetadata(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Metadata on AnnotatedDataset.
This message has oneof fields (mutually exclusive fields). For each oneof, at most one member field can be set at the same time. Setting any member of the oneof automatically clears all other members.
- image_classification_config¶
Configuration for image classification task.
This field is a member of oneof
annotation_request_config
.
- bounding_poly_config¶
Configuration for image bounding box and bounding poly task.
This field is a member of oneof
annotation_request_config
.
- polyline_config¶
Configuration for image polyline task.
This field is a member of oneof
annotation_request_config
.
- segmentation_config¶
Configuration for image segmentation task.
This field is a member of oneof
annotation_request_config
.
- video_classification_config¶
Configuration for video classification task.
This field is a member of oneof
annotation_request_config
.
- object_detection_config¶
Configuration for video object detection task.
This field is a member of oneof
annotation_request_config
.
- object_tracking_config¶
Configuration for video object tracking task.
This field is a member of oneof
annotation_request_config
.
- event_config¶
Configuration for video event labeling task.
This field is a member of oneof
annotation_request_config
.
- text_classification_config¶
Configuration for text classification task.
This field is a member of oneof
annotation_request_config
.
- text_entity_extraction_config¶
Configuration for text entity extraction task.
This field is a member of oneof
annotation_request_config
.
- human_annotation_config¶
HumanAnnotationConfig used when requesting the human labeling task for this AnnotatedDataset.
- class google.cloud.datalabeling_v1beta1.types.Annotation(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Annotation for Example. Each example may have one or more annotations. For example in image classification problem, each image might have one or more labels. We call labels binded with this image an Annotation.
- name¶
Output only. Unique name of this annotation, format is:
projects/{project_id}/datasets/{dataset_id}/annotatedDatasets/{annotated_dataset}/examples/{example_id}/annotations/{annotation_id}
- Type
- annotation_source¶
Output only. The source of the annotation.
- annotation_value¶
Output only. This is the actual annotation value, e.g classification, bounding box values are stored here.
- annotation_metadata¶
Output only. Annotation metadata, including information like votes for labels.
- annotation_sentiment¶
Output only. Sentiment for this annotation.
- class google.cloud.datalabeling_v1beta1.types.AnnotationMetadata(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Additional information associated with the annotation.
- operator_metadata¶
Metadata related to human labeling.
- class google.cloud.datalabeling_v1beta1.types.AnnotationSentiment(value)[source]¶
Bases:
proto.enums.Enum
- Values:
- ANNOTATION_SENTIMENT_UNSPECIFIED (0):
No description available.
- NEGATIVE (1):
This annotation describes negatively about the data.
- POSITIVE (2):
This label describes positively about the data.
- class google.cloud.datalabeling_v1beta1.types.AnnotationSource(value)[source]¶
Bases:
proto.enums.Enum
Specifies where the annotation comes from (whether it was provided by a human labeler or a different source).
- Values:
- ANNOTATION_SOURCE_UNSPECIFIED (0):
No description available.
- OPERATOR (3):
Answer is provided by a human contributor.
- class google.cloud.datalabeling_v1beta1.types.AnnotationSpec(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Container of information related to one possible annotation that can be used in a labeling task. For example, an image classification task where images are labeled as
dog
orcat
must reference an AnnotationSpec fordog
and an AnnotationSpec forcat
.
- class google.cloud.datalabeling_v1beta1.types.AnnotationSpecSet(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
An AnnotationSpecSet is a collection of label definitions. For example, in image classification tasks, you define a set of possible labels for images as an AnnotationSpecSet. An AnnotationSpecSet is immutable upon creation.
- name¶
Output only. The AnnotationSpecSet resource name in the following format:
“projects/{project_id}/annotationSpecSets/{annotation_spec_set_id}”.
- Type
- display_name¶
Required. The display name for AnnotationSpecSet that you define when you create it. Maximum of 64 characters.
- Type
- description¶
Optional. User-provided description of the annotation specification set. The description can be up to 10,000 characters long.
- Type
- annotation_specs¶
Required. The array of AnnotationSpecs that you define when you create the AnnotationSpecSet. These are the possible labels for the labeling task.
- Type
MutableSequence[google.cloud.datalabeling_v1beta1.types.AnnotationSpec]
- class google.cloud.datalabeling_v1beta1.types.AnnotationType(value)[source]¶
Bases:
proto.enums.Enum
- Values:
- ANNOTATION_TYPE_UNSPECIFIED (0):
No description available.
- IMAGE_CLASSIFICATION_ANNOTATION (1):
Classification annotations in an image. Allowed for continuous evaluation.
- IMAGE_BOUNDING_BOX_ANNOTATION (2):
Bounding box annotations in an image. A form of image object detection. Allowed for continuous evaluation.
- IMAGE_ORIENTED_BOUNDING_BOX_ANNOTATION (13):
Oriented bounding box. The box does not have to be parallel to horizontal line.
- IMAGE_BOUNDING_POLY_ANNOTATION (10):
Bounding poly annotations in an image.
- IMAGE_POLYLINE_ANNOTATION (11):
Polyline annotations in an image.
- IMAGE_SEGMENTATION_ANNOTATION (12):
Segmentation annotations in an image.
- VIDEO_SHOTS_CLASSIFICATION_ANNOTATION (3):
Classification annotations in video shots.
- VIDEO_OBJECT_TRACKING_ANNOTATION (4):
Video object tracking annotation.
- VIDEO_OBJECT_DETECTION_ANNOTATION (5):
Video object detection annotation.
- VIDEO_EVENT_ANNOTATION (6):
Video event annotation.
- TEXT_CLASSIFICATION_ANNOTATION (8):
Classification for text. Allowed for continuous evaluation.
- TEXT_ENTITY_EXTRACTION_ANNOTATION (9):
Entity extraction for text.
- GENERAL_CLASSIFICATION_ANNOTATION (14):
General classification. Allowed for continuous evaluation.
- class google.cloud.datalabeling_v1beta1.types.AnnotationValue(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Annotation value for an example.
This message has oneof fields (mutually exclusive fields). For each oneof, at most one member field can be set at the same time. Setting any member of the oneof automatically clears all other members.
- image_classification_annotation¶
Annotation value for image classification case.
This field is a member of oneof
value_type
.
- image_bounding_poly_annotation¶
Annotation value for image bounding box, oriented bounding box and polygon cases.
This field is a member of oneof
value_type
.
- image_polyline_annotation¶
Annotation value for image polyline cases. Polyline here is different from BoundingPoly. It is formed by line segments connected to each other but not closed form(Bounding Poly). The line segments can cross each other.
This field is a member of oneof
value_type
.
- image_segmentation_annotation¶
Annotation value for image segmentation.
This field is a member of oneof
value_type
.
- text_classification_annotation¶
Annotation value for text classification case.
This field is a member of oneof
value_type
.
- text_entity_extraction_annotation¶
Annotation value for text entity extraction case.
This field is a member of oneof
value_type
.
- video_classification_annotation¶
Annotation value for video classification case.
This field is a member of oneof
value_type
.
- video_object_tracking_annotation¶
Annotation value for video object detection and tracking case.
This field is a member of oneof
value_type
.
- class google.cloud.datalabeling_v1beta1.types.Attempt(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Records a failed evaluation job run.
- attempt_time¶
- partial_failures¶
Details of errors that occurred.
- Type
MutableSequence[google.rpc.status_pb2.Status]
- class google.cloud.datalabeling_v1beta1.types.BigQuerySource(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
The BigQuery location for input data. If used in an [EvaluationJob][google.cloud.datalabeling.v1beta1.EvaluationJob], this is where the service saves the prediction input and output sampled from the model version.
- input_uri¶
Required. BigQuery URI to a table, up to 2,000 characters long. If you specify the URI of a table that does not exist, Data Labeling Service creates a table at the URI with the correct schema when you create your [EvaluationJob][google.cloud.datalabeling.v1beta1.EvaluationJob]. If you specify the URI of a table that already exists, it must have the correct schema.
Provide the table URI in the following format:
“bq://{your_project_id}/{your_dataset_name}/{your_table_name}”
- Type
- class google.cloud.datalabeling_v1beta1.types.BoundingBoxEvaluationOptions(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Options regarding evaluation between bounding boxes.
- class google.cloud.datalabeling_v1beta1.types.BoundingPoly(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
A bounding polygon in the image.
- vertices¶
The bounding polygon vertices.
- Type
MutableSequence[google.cloud.datalabeling_v1beta1.types.Vertex]
- class google.cloud.datalabeling_v1beta1.types.BoundingPolyConfig(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Config for image bounding poly (and bounding box) human labeling task.
- class google.cloud.datalabeling_v1beta1.types.ClassificationMetadata(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Metadata for classification annotations.
- class google.cloud.datalabeling_v1beta1.types.ClassificationMetrics(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Metrics calculated for a classification model.
- pr_curve¶
Precision-recall curve based on ground truth labels, predicted labels, and scores for the predicted labels.
- confusion_matrix¶
Confusion matrix of predicted labels vs. ground truth labels.
- class google.cloud.datalabeling_v1beta1.types.ConfusionMatrix(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Confusion matrix of the model running the classification. Only applicable when the metrics entry aggregates multiple labels. Not applicable when the entry is for a single label.
- row¶
- Type
MutableSequence[google.cloud.datalabeling_v1beta1.types.ConfusionMatrix.Row]
- class ConfusionMatrixEntry(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
- annotation_spec¶
The annotation spec of a predicted label.
- class Row(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
A row in the confusion matrix. Each entry in this row has the same ground truth label.
- annotation_spec¶
The annotation spec of the ground truth label for this row.
- entries¶
A list of the confusion matrix entries. One entry for each possible predicted label.
- Type
MutableSequence[google.cloud.datalabeling_v1beta1.types.ConfusionMatrix.ConfusionMatrixEntry]
- class google.cloud.datalabeling_v1beta1.types.CreateAnnotationSpecSetRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Request message for CreateAnnotationSpecSet.
- annotation_spec_set¶
Required. Annotation spec set to create. Annotation specs must be included. Only one annotation spec will be accepted for annotation specs with same display_name.
- class google.cloud.datalabeling_v1beta1.types.CreateDatasetRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Request message for CreateDataset.
- dataset¶
Required. The dataset to be created.
- class google.cloud.datalabeling_v1beta1.types.CreateEvaluationJobRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Request message for CreateEvaluationJob.
- job¶
Required. The evaluation job to create.
- class google.cloud.datalabeling_v1beta1.types.CreateInstructionMetadata(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Metadata of a CreateInstruction operation.
- instruction¶
The name of the created Instruction. projects/{project_id}/instructions/{instruction_id}
- Type
- partial_failures¶
Partial failures encountered. E.g. single files that couldn’t be read. Status details field will contain standard GCP error details.
- Type
MutableSequence[google.rpc.status_pb2.Status]
- create_time¶
Timestamp when create instruction request was created.
- class google.cloud.datalabeling_v1beta1.types.CreateInstructionRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Request message for CreateInstruction.
- instruction¶
Required. Instruction of how to perform the labeling task.
- class google.cloud.datalabeling_v1beta1.types.CsvInstruction(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Deprecated: this instruction format is not supported any more. Instruction from a CSV file.
- class google.cloud.datalabeling_v1beta1.types.DataItem(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
DataItem is a piece of data, without annotation. For example, an image.
This message has oneof fields (mutually exclusive fields). For each oneof, at most one member field can be set at the same time. Setting any member of the oneof automatically clears all other members.
- image_payload¶
The image payload, a container of the image bytes/uri.
This field is a member of oneof
payload
.
- text_payload¶
The text payload, a container of text content.
This field is a member of oneof
payload
.
- class google.cloud.datalabeling_v1beta1.types.DataType(value)[source]¶
Bases:
proto.enums.Enum
- Values:
- DATA_TYPE_UNSPECIFIED (0):
No description available.
- IMAGE (1):
Allowed for continuous evaluation.
- VIDEO (2):
No description available.
- TEXT (4):
Allowed for continuous evaluation.
- GENERAL_DATA (6):
Allowed for continuous evaluation.
- class google.cloud.datalabeling_v1beta1.types.Dataset(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Dataset is the resource to hold your data. You can request multiple labeling tasks for a dataset while each one will generate an AnnotatedDataset.
- name¶
Output only. Dataset resource name, format is: projects/{project_id}/datasets/{dataset_id}
- Type
- description¶
Optional. User-provided description of the annotation specification set. The description can be up to 10000 characters long.
- Type
- create_time¶
Output only. Time the dataset is created.
- input_configs¶
Output only. This is populated with the original input configs where ImportData is called. It is available only after the clients import data to this dataset.
- Type
MutableSequence[google.cloud.datalabeling_v1beta1.types.InputConfig]
- class google.cloud.datalabeling_v1beta1.types.DeleteAnnotatedDatasetRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Request message for DeleteAnnotatedDataset.
- class google.cloud.datalabeling_v1beta1.types.DeleteAnnotationSpecSetRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Request message for DeleteAnnotationSpecSet.
- class google.cloud.datalabeling_v1beta1.types.DeleteDatasetRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Request message for DeleteDataset.
- class google.cloud.datalabeling_v1beta1.types.DeleteEvaluationJobRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Request message DeleteEvaluationJob.
- class google.cloud.datalabeling_v1beta1.types.DeleteInstructionRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Request message for DeleteInstruction.
- class google.cloud.datalabeling_v1beta1.types.Evaluation(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Describes an evaluation between a machine learning model’s predictions and ground truth labels. Created when an [EvaluationJob][google.cloud.datalabeling.v1beta1.EvaluationJob] runs successfully.
- name¶
Output only. Resource name of an evaluation. The name has the following format:
“projects/{project_id}/datasets/{dataset_id}/evaluations/{evaluation_id}’
- Type
- config¶
Output only. Options used in the evaluation job that created this evaluation.
- evaluation_job_run_time¶
Output only. Timestamp for when the evaluation job that created this evaluation ran.
- create_time¶
Output only. Timestamp for when this evaluation was created.
- evaluation_metrics¶
Output only. Metrics comparing predictions to ground truth labels.
- annotation_type¶
Output only. Type of task that the model version being evaluated performs, as defined in the
[evaluationJobConfig.inputConfig.annotationType][google.cloud.datalabeling.v1beta1.EvaluationJobConfig.input_config] field of the evaluation job that created this evaluation.
- class google.cloud.datalabeling_v1beta1.types.EvaluationConfig(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Configuration details used for calculating evaluation metrics and creating an [Evaluation][google.cloud.datalabeling.v1beta1.Evaluation].
- class google.cloud.datalabeling_v1beta1.types.EvaluationJob(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Defines an evaluation job that runs periodically to generate [Evaluations][google.cloud.datalabeling.v1beta1.Evaluation]. Creating an evaluation job is the starting point for using continuous evaluation.
- name¶
Output only. After you create a job, Data Labeling Service assigns a name to the job with the following format:
“projects/{project_id}/evaluationJobs/{evaluation_job_id}”.
- Type
- description¶
Required. Description of the job. The description can be up to 25,000 characters long.
- Type
- state¶
Output only. Describes the current state of the job.
- schedule¶
Required. Describes the interval at which the job runs. This interval must be at least 1 day, and it is rounded to the nearest day. For example, if you specify a 50-hour interval, the job runs every 2 days.
You can provide the schedule in crontab format or in an English-like format.
Regardless of what you specify, the job will run at 10:00 AM UTC. Only the interval from this schedule is used, not the specific time of day.
- Type
- model_version¶
Required. The AI Platform Prediction model version to be evaluated. Prediction input and output is sampled from this model version. When creating an evaluation job, specify the model version in the following format:
“projects/{project_id}/models/{model_name}/versions/{version_name}”
There can only be one evaluation job per model version.
- Type
- evaluation_job_config¶
Required. Configuration details for the evaluation job.
- annotation_spec_set¶
Required. Name of the [AnnotationSpecSet][google.cloud.datalabeling.v1beta1.AnnotationSpecSet] describing all the labels that your machine learning model outputs. You must create this resource before you create an evaluation job and provide its name in the following format:
“projects/{project_id}/annotationSpecSets/{annotation_spec_set_id}”.
- Type
- label_missing_ground_truth¶
Required. Whether you want Data Labeling Service to provide ground truth labels for prediction input. If you want the service to assign human labelers to annotate your data, set this to
true
. If you want to provide your own ground truth labels in the evaluation job’s BigQuery table, set this tofalse
.- Type
- attempts¶
Output only. Every time the evaluation job runs and an error occurs, the failed attempt is appended to this array.
- Type
MutableSequence[google.cloud.datalabeling_v1beta1.types.Attempt]
- create_time¶
Output only. Timestamp of when this evaluation job was created.
- class State(value)[source]¶
Bases:
proto.enums.Enum
State of the job.
- Values:
- STATE_UNSPECIFIED (0):
No description available.
- SCHEDULED (1):
The job is scheduled to run at the [configured interval][google.cloud.datalabeling.v1beta1.EvaluationJob.schedule]. You can [pause][google.cloud.datalabeling.v1beta1.DataLabelingService.PauseEvaluationJob] or [delete][google.cloud.datalabeling.v1beta1.DataLabelingService.DeleteEvaluationJob] the job.
When the job is in this state, it samples prediction input and output from your model version into your BigQuery table as predictions occur.
- RUNNING (2):
The job is currently running. When the job runs, Data Labeling Service does several things:
If you have configured your job to use Data Labeling Service for ground truth labeling, the service creates a [Dataset][google.cloud.datalabeling.v1beta1.Dataset] and a labeling task for all data sampled since the last time the job ran. Human labelers provide ground truth labels for your data. Human labeling may take hours, or even days, depending on how much data has been sampled. The job remains in the
RUNNING
state during this time, and it can even be running multiple times in parallel if it gets triggered again (for example 24 hours later) before the earlier run has completed. When human labelers have finished labeling the data, the next step occurs. If you have configured your job to provide your own ground truth labels, Data Labeling Service still creates a [Dataset][google.cloud.datalabeling.v1beta1.Dataset] for newly sampled data, but it expects that you have already added ground truth labels to the BigQuery table by this time. The next step occurs immediately.Data Labeling Service creates an [Evaluation][google.cloud.datalabeling.v1beta1.Evaluation] by comparing your model version’s predictions with the ground truth labels.
If the job remains in this state for a long time, it continues to sample prediction data into your BigQuery table and will run again at the next interval, even if it causes the job to run multiple times in parallel.
- PAUSED (3):
The job is not sampling prediction input and output into your BigQuery table and it will not run according to its schedule. You can [resume][google.cloud.datalabeling.v1beta1.DataLabelingService.ResumeEvaluationJob] the job.
- STOPPED (4):
The job has this state right before it is deleted.
- class google.cloud.datalabeling_v1beta1.types.EvaluationJobAlertConfig(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Provides details for how an evaluation job sends email alerts based on the results of a run.
- min_acceptable_mean_average_precision¶
Required. A number between 0 and 1 that describes a minimum mean average precision threshold. When the evaluation job runs, if it calculates that your model version’s predictions from the recent interval have [meanAveragePrecision][google.cloud.datalabeling.v1beta1.PrCurve.mean_average_precision] below this threshold, then it sends an alert to your specified email.
- Type
- class google.cloud.datalabeling_v1beta1.types.EvaluationJobConfig(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Configures specific details of how a continuous evaluation job works. Provide this configuration when you create an EvaluationJob.
This message has oneof fields (mutually exclusive fields). For each oneof, at most one member field can be set at the same time. Setting any member of the oneof automatically clears all other members.
- image_classification_config¶
Specify this field if your model version performs image classification or general classification.
annotationSpecSet
in this configuration must match [EvaluationJob.annotationSpecSet][google.cloud.datalabeling.v1beta1.EvaluationJob.annotation_spec_set].allowMultiLabel
in this configuration must matchclassificationMetadata.isMultiLabel
in [input_config][google.cloud.datalabeling.v1beta1.EvaluationJobConfig.input_config].This field is a member of oneof
human_annotation_request_config
.
- bounding_poly_config¶
Specify this field if your model version performs image object detection (bounding box detection).
annotationSpecSet
in this configuration must match [EvaluationJob.annotationSpecSet][google.cloud.datalabeling.v1beta1.EvaluationJob.annotation_spec_set].This field is a member of oneof
human_annotation_request_config
.
- text_classification_config¶
Specify this field if your model version performs text classification.
annotationSpecSet
in this configuration must match [EvaluationJob.annotationSpecSet][google.cloud.datalabeling.v1beta1.EvaluationJob.annotation_spec_set].allowMultiLabel
in this configuration must matchclassificationMetadata.isMultiLabel
in [input_config][google.cloud.datalabeling.v1beta1.EvaluationJobConfig.input_config].This field is a member of oneof
human_annotation_request_config
.
- input_config¶
Rquired. Details for the sampled prediction input. Within this configuration, there are requirements for several fields:
dataType
must be one ofIMAGE
,TEXT
, orGENERAL_DATA
.annotationType
must be one ofIMAGE_CLASSIFICATION_ANNOTATION
,TEXT_CLASSIFICATION_ANNOTATION
,GENERAL_CLASSIFICATION_ANNOTATION
, orIMAGE_BOUNDING_BOX_ANNOTATION
(image object detection).If your machine learning model performs classification, you must specify
classificationMetadata.isMultiLabel
.You must specify
bigquerySource
(notgcsSource
).
- evaluation_config¶
Required. Details for calculating evaluation metrics and creating [Evaulations][google.cloud.datalabeling.v1beta1.Evaluation]. If your model version performs image object detection, you must specify the
boundingBoxEvaluationOptions
field within this configuration. Otherwise, provide an empty object for this configuration.
- human_annotation_config¶
Optional. Details for human annotation of your data. If you set [labelMissingGroundTruth][google.cloud.datalabeling.v1beta1.EvaluationJob.label_missing_ground_truth] to
true
for this evaluation job, then you must specify this field. If you plan to provide your own ground truth labels, then omit this field.Note that you must create an [Instruction][google.cloud.datalabeling.v1beta1.Instruction] resource before you can specify this field. Provide the name of the instruction resource in the
instruction
field within this configuration.
- bigquery_import_keys¶
Required. Prediction keys that tell Data Labeling Service where to find the data for evaluation in your BigQuery table. When the service samples prediction input and output from your model version and saves it to BigQuery, the data gets stored as JSON strings in the BigQuery table. These keys tell Data Labeling Service how to parse the JSON.
You can provide the following entries in this field:
data_json_key
: the data key for prediction input. You must provide either this key orreference_json_key
.reference_json_key
: the data reference key for prediction input. You must provide either this key ordata_json_key
.label_json_key
: the label key for prediction output. Required.label_score_json_key
: the score key for prediction output. Required.bounding_box_json_key
: the bounding box key for prediction output. Required if your model version perform image object detection.
- example_count¶
Required. The maximum number of predictions to sample and save to BigQuery during each [evaluation interval][google.cloud.datalabeling.v1beta1.EvaluationJob.schedule]. This limit overrides
example_sample_percentage
: even if the service has not sampled enough predictions to fulfillexample_sample_perecentage
during an interval, it stops sampling predictions when it meets this limit.- Type
- example_sample_percentage¶
Required. Fraction of predictions to sample and save to BigQuery during each [evaluation interval][google.cloud.datalabeling.v1beta1.EvaluationJob.schedule]. For example, 0.1 means 10% of predictions served by your model version get saved to BigQuery.
- Type
- evaluation_job_alert_config¶
Optional. Configuration details for evaluation job alerts. Specify this field if you want to receive email alerts if the evaluation job finds that your predictions have low mean average precision during a run.
- class BigqueryImportKeysEntry(mapping=None, *, ignore_unknown_fields=False, **kwargs)¶
Bases:
proto.message.Message
- class google.cloud.datalabeling_v1beta1.types.EvaluationMetrics(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
This message has oneof fields (mutually exclusive fields). For each oneof, at most one member field can be set at the same time. Setting any member of the oneof automatically clears all other members.
- class google.cloud.datalabeling_v1beta1.types.EventConfig(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Config for video event human labeling task.
- class google.cloud.datalabeling_v1beta1.types.Example(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
An Example is a piece of data and its annotation. For example, an image with label “house”.
This message has oneof fields (mutually exclusive fields). For each oneof, at most one member field can be set at the same time. Setting any member of the oneof automatically clears all other members.
- image_payload¶
The image payload, a container of the image bytes/uri.
This field is a member of oneof
payload
.
- text_payload¶
The text payload, a container of the text content.
This field is a member of oneof
payload
.
- video_payload¶
The video payload, a container of the video uri.
This field is a member of oneof
payload
.
- name¶
Output only. Name of the example, in format of: projects/{project_id}/datasets/{dataset_id}/annotatedDatasets/ {annotated_dataset_id}/examples/{example_id}
- Type
- annotations¶
Output only. Annotations for the piece of data in Example. One piece of data can have multiple annotations.
- Type
MutableSequence[google.cloud.datalabeling_v1beta1.types.Annotation]
- class google.cloud.datalabeling_v1beta1.types.ExportDataOperationMetadata(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Metadata of an ExportData operation.
- partial_failures¶
Output only. Partial failures encountered. E.g. single files that couldn’t be read. Status details field will contain standard GCP error details.
- Type
MutableSequence[google.rpc.status_pb2.Status]
- create_time¶
Output only. Timestamp when export dataset request was created.
- class google.cloud.datalabeling_v1beta1.types.ExportDataOperationResponse(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Response used for ExportDataset longrunning operation.
- label_stats¶
Output only. Statistic infos of labels in the exported dataset.
- output_config¶
Output only. output_config in the ExportData request.
- class google.cloud.datalabeling_v1beta1.types.ExportDataRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Request message for ExportData API.
- annotated_dataset¶
Required. Annotated dataset resource name. DataItem in Dataset and their annotations in specified annotated dataset will be exported. It’s in format of projects/{project_id}/datasets/{dataset_id}/annotatedDatasets/ {annotated_dataset_id}
- Type
- output_config¶
Required. Specify the output destination.
- class google.cloud.datalabeling_v1beta1.types.GcsDestination(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Export destination of the data.Only gcs path is allowed in output_uri.
- class google.cloud.datalabeling_v1beta1.types.GcsFolderDestination(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Export folder destination of the data.
- class google.cloud.datalabeling_v1beta1.types.GcsSource(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Source of the Cloud Storage file to be imported.
- input_uri¶
Required. The input URI of source file. This must be a Cloud Storage path (
gs://...
).- Type
- class google.cloud.datalabeling_v1beta1.types.GetAnnotatedDatasetRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Request message for GetAnnotatedDataset.
- class google.cloud.datalabeling_v1beta1.types.GetAnnotationSpecSetRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Request message for GetAnnotationSpecSet.
- class google.cloud.datalabeling_v1beta1.types.GetDataItemRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Request message for GetDataItem.
- class google.cloud.datalabeling_v1beta1.types.GetDatasetRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Request message for GetDataSet.
- class google.cloud.datalabeling_v1beta1.types.GetEvaluationJobRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Request message for GetEvaluationJob.
- class google.cloud.datalabeling_v1beta1.types.GetEvaluationRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Request message for GetEvaluation.
- class google.cloud.datalabeling_v1beta1.types.GetExampleRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Request message for GetExample
- name¶
Required. Name of example, format: projects/{project_id}/datasets/{dataset_id}/annotatedDatasets/ {annotated_dataset_id}/examples/{example_id}
- Type
- class google.cloud.datalabeling_v1beta1.types.GetInstructionRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Request message for GetInstruction.
- class google.cloud.datalabeling_v1beta1.types.HumanAnnotationConfig(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Configuration for how human labeling task should be done.
- annotated_dataset_display_name¶
Required. A human-readable name for AnnotatedDataset defined by users. Maximum of 64 characters .
- Type
- annotated_dataset_description¶
Optional. A human-readable description for AnnotatedDataset. The description can be up to 10000 characters long.
- Type
- label_group¶
Optional. A human-readable label used to logically group labeling tasks. This string must match the regular expression
[a-zA-Z\\d_-]{0,128}
.- Type
- language_code¶
Optional. The Language of this question, as a BCP-47. Default value is en-US. Only need to set this when task is language related. For example, French text classification.
- Type
- replica_count¶
Optional. Replication of questions. Each question will be sent to up to this number of contributors to label. Aggregated answers will be returned. Default is set to 1. For image related labeling, valid values are 1, 3, 5.
- Type
- question_duration¶
Optional. Maximum duration for contributors to answer a question. Maximum is 3600 seconds. Default is 3600 seconds.
- contributor_emails¶
Optional. If you want your own labeling contributors to manage and work on this labeling request, you can set these contributors here. We will give them access to the question types in crowdcompute. Note that these emails must be registered in crowdcompute worker UI:
https://crowd-compute.appspot.com/
- Type
MutableSequence[str]
- class google.cloud.datalabeling_v1beta1.types.ImageBoundingPolyAnnotation(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Image bounding poly annotation. It represents a polygon including bounding box in the image.
This message has oneof fields (mutually exclusive fields). For each oneof, at most one member field can be set at the same time. Setting any member of the oneof automatically clears all other members.
- annotation_spec¶
Label of object in this bounding polygon.
- class google.cloud.datalabeling_v1beta1.types.ImageClassificationAnnotation(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Image classification annotation definition.
- annotation_spec¶
Label of image.
- class google.cloud.datalabeling_v1beta1.types.ImageClassificationConfig(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Config for image classification human labeling task.
- allow_multi_label¶
Optional. If allow_multi_label is true, contributors are able to choose multiple labels for one image.
- Type
- answer_aggregation_type¶
Optional. The type of how to aggregate answers.
- class google.cloud.datalabeling_v1beta1.types.ImagePayload(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Container of information about an image.
- class google.cloud.datalabeling_v1beta1.types.ImagePolylineAnnotation(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
A polyline for the image annotation.
This message has oneof fields (mutually exclusive fields). For each oneof, at most one member field can be set at the same time. Setting any member of the oneof automatically clears all other members.
- annotation_spec¶
Label of this polyline.
- class google.cloud.datalabeling_v1beta1.types.ImageSegmentationAnnotation(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Image segmentation annotation.
- annotation_colors¶
The mapping between rgb color and annotation spec. The key is the rgb color represented in format of rgb(0, 0, 0). The value is the AnnotationSpec.
- Type
MutableMapping[str, google.cloud.datalabeling_v1beta1.types.AnnotationSpec]
- class AnnotationColorsEntry(mapping=None, *, ignore_unknown_fields=False, **kwargs)¶
Bases:
proto.message.Message
- class google.cloud.datalabeling_v1beta1.types.ImportDataOperationMetadata(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Metadata of an ImportData operation.
- partial_failures¶
Output only. Partial failures encountered. E.g. single files that couldn’t be read. Status details field will contain standard GCP error details.
- Type
MutableSequence[google.rpc.status_pb2.Status]
- create_time¶
Output only. Timestamp when import dataset request was created.
- class google.cloud.datalabeling_v1beta1.types.ImportDataOperationResponse(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Response used for ImportData longrunning operation.
- class google.cloud.datalabeling_v1beta1.types.ImportDataRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Request message for ImportData API.
- input_config¶
Required. Specify the input source of the data.
- class google.cloud.datalabeling_v1beta1.types.InputConfig(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
The configuration of input data, including data type, location, etc.
This message has oneof fields (mutually exclusive fields). For each oneof, at most one member field can be set at the same time. Setting any member of the oneof automatically clears all other members.
- text_metadata¶
Required for text import, as language code must be specified.
This field is a member of oneof
data_type_metadata
.
- bigquery_source¶
Source located in BigQuery. You must specify this field if you are using this InputConfig in an [EvaluationJob][google.cloud.datalabeling.v1beta1.EvaluationJob].
This field is a member of oneof
source
.
- data_type¶
Required. Data type must be specifed when user tries to import data.
- annotation_type¶
Optional. The type of annotation to be performed on this data. You must specify this field if you are using this InputConfig in an [EvaluationJob][google.cloud.datalabeling.v1beta1.EvaluationJob].
- classification_metadata¶
Optional. Metadata about annotations for the input. You must specify this field if you are using this InputConfig in an [EvaluationJob][google.cloud.datalabeling.v1beta1.EvaluationJob] for a model version that performs classification.
- class google.cloud.datalabeling_v1beta1.types.Instruction(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Instruction of how to perform the labeling task for human operators. Currently only PDF instruction is supported.
- name¶
Output only. Instruction resource name, format: projects/{project_id}/instructions/{instruction_id}
- Type
- description¶
Optional. User-provided description of the instruction. The description can be up to 10000 characters long.
- Type
- create_time¶
Output only. Creation time of instruction.
- update_time¶
Output only. Last update time of instruction.
- data_type¶
Required. The data type of this instruction.
- csv_instruction¶
Deprecated: this instruction format is not supported any more. Instruction from a CSV file, such as for classification task. The CSV file should have exact two columns, in the following format:
The first column is labeled data, such as an image reference, text.
The second column is comma separated labels associated with data.
- pdf_instruction¶
Instruction from a PDF document. The PDF should be in a Cloud Storage bucket.
- class google.cloud.datalabeling_v1beta1.types.LabelImageBoundingBoxOperationMetadata(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Details of a LabelImageBoundingBox operation metadata.
- basic_config¶
Basic human annotation config used in labeling request.
- class google.cloud.datalabeling_v1beta1.types.LabelImageBoundingPolyOperationMetadata(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Details of LabelImageBoundingPoly operation metadata.
- basic_config¶
Basic human annotation config used in labeling request.
- class google.cloud.datalabeling_v1beta1.types.LabelImageClassificationOperationMetadata(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Metadata of a LabelImageClassification operation.
- basic_config¶
Basic human annotation config used in labeling request.
- class google.cloud.datalabeling_v1beta1.types.LabelImageOrientedBoundingBoxOperationMetadata(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Details of a LabelImageOrientedBoundingBox operation metadata.
- basic_config¶
Basic human annotation config.
- class google.cloud.datalabeling_v1beta1.types.LabelImagePolylineOperationMetadata(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Details of LabelImagePolyline operation metadata.
- basic_config¶
Basic human annotation config used in labeling request.
- class google.cloud.datalabeling_v1beta1.types.LabelImageRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Request message for starting an image labeling task.
This message has oneof fields (mutually exclusive fields). For each oneof, at most one member field can be set at the same time. Setting any member of the oneof automatically clears all other members.
- image_classification_config¶
Configuration for image classification task. One of image_classification_config, bounding_poly_config, polyline_config and segmentation_config are required.
This field is a member of oneof
request_config
.
- bounding_poly_config¶
Configuration for bounding box and bounding poly task. One of image_classification_config, bounding_poly_config, polyline_config and segmentation_config are required.
This field is a member of oneof
request_config
.
- polyline_config¶
Configuration for polyline task. One of image_classification_config, bounding_poly_config, polyline_config and segmentation_config are required.
This field is a member of oneof
request_config
.
- segmentation_config¶
Configuration for segmentation task. One of image_classification_config, bounding_poly_config, polyline_config and segmentation_config are required.
This field is a member of oneof
request_config
.
- parent¶
Required. Name of the dataset to request labeling task, format: projects/{project_id}/datasets/{dataset_id}
- Type
- basic_config¶
Required. Basic human annotation config.
- feature¶
Required. The type of image labeling task.
- class Feature(value)[source]¶
Bases:
proto.enums.Enum
Image labeling task feature.
- Values:
- FEATURE_UNSPECIFIED (0):
No description available.
- CLASSIFICATION (1):
Label whole image with one or more of labels.
- BOUNDING_BOX (2):
Label image with bounding boxes for labels.
- ORIENTED_BOUNDING_BOX (6):
Label oriented bounding box. The box does not have to be parallel to horizontal line.
- BOUNDING_POLY (3):
Label images with bounding poly. A bounding poly is a plane figure that is bounded by a finite chain of straight line segments closing in a loop.
- POLYLINE (4):
Label images with polyline. Polyline is formed by connected line segments which are not in closed form.
- SEGMENTATION (5):
Label images with segmentation. Segmentation is different from bounding poly since it is more fine-grained, pixel level annotation.
- class google.cloud.datalabeling_v1beta1.types.LabelImageSegmentationOperationMetadata(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Details of a LabelImageSegmentation operation metadata.
- basic_config¶
Basic human annotation config.
- class google.cloud.datalabeling_v1beta1.types.LabelOperationMetadata(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Metadata of a labeling operation, such as LabelImage or LabelVideo. Next tag: 20
This message has oneof fields (mutually exclusive fields). For each oneof, at most one member field can be set at the same time. Setting any member of the oneof automatically clears all other members.
- image_classification_details¶
Details of label image classification operation.
This field is a member of oneof
details
.
- image_bounding_box_details¶
Details of label image bounding box operation.
This field is a member of oneof
details
.
- image_bounding_poly_details¶
Details of label image bounding poly operation.
This field is a member of oneof
details
.
- image_oriented_bounding_box_details¶
Details of label image oriented bounding box operation.
This field is a member of oneof
details
.
- image_polyline_details¶
Details of label image polyline operation.
This field is a member of oneof
details
.
- image_segmentation_details¶
Details of label image segmentation operation.
This field is a member of oneof
details
.
- video_classification_details¶
Details of label video classification operation.
This field is a member of oneof
details
.
- video_object_detection_details¶
Details of label video object detection operation.
This field is a member of oneof
details
.
- video_object_tracking_details¶
Details of label video object tracking operation.
This field is a member of oneof
details
.
- video_event_details¶
Details of label video event operation.
This field is a member of oneof
details
.
- text_classification_details¶
Details of label text classification operation.
This field is a member of oneof
details
.
- text_entity_extraction_details¶
Details of label text entity extraction operation.
This field is a member of oneof
details
.
- partial_failures¶
Output only. Partial failures encountered. E.g. single files that couldn’t be read. Status details field will contain standard GCP error details.
- Type
MutableSequence[google.rpc.status_pb2.Status]
- create_time¶
Output only. Timestamp when labeling request was created.
- class google.cloud.datalabeling_v1beta1.types.LabelStats(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Statistics about annotation specs.
- example_count¶
Map of each annotation spec’s example count. Key is the annotation spec name and value is the number of examples for that annotation spec. If the annotated dataset does not have annotation spec, the map will return a pair where the key is empty string and value is the total number of annotations.
- class ExampleCountEntry(mapping=None, *, ignore_unknown_fields=False, **kwargs)¶
Bases:
proto.message.Message
- class google.cloud.datalabeling_v1beta1.types.LabelTextClassificationOperationMetadata(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Details of a LabelTextClassification operation metadata.
- basic_config¶
Basic human annotation config used in labeling request.
- class google.cloud.datalabeling_v1beta1.types.LabelTextEntityExtractionOperationMetadata(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Details of a LabelTextEntityExtraction operation metadata.
- basic_config¶
Basic human annotation config used in labeling request.
- class google.cloud.datalabeling_v1beta1.types.LabelTextRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Request message for LabelText.
This message has oneof fields (mutually exclusive fields). For each oneof, at most one member field can be set at the same time. Setting any member of the oneof automatically clears all other members.
- text_classification_config¶
Configuration for text classification task. One of text_classification_config and text_entity_extraction_config is required.
This field is a member of oneof
request_config
.
- text_entity_extraction_config¶
Configuration for entity extraction task. One of text_classification_config and text_entity_extraction_config is required.
This field is a member of oneof
request_config
.
- parent¶
Required. Name of the data set to request labeling task, format: projects/{project_id}/datasets/{dataset_id}
- Type
- basic_config¶
Required. Basic human annotation config.
- feature¶
Required. The type of text labeling task.
- class Feature(value)[source]¶
Bases:
proto.enums.Enum
Text labeling task feature.
- Values:
- FEATURE_UNSPECIFIED (0):
No description available.
- TEXT_CLASSIFICATION (1):
Label text content to one of more labels.
- TEXT_ENTITY_EXTRACTION (2):
Label entities and their span in text.
- class google.cloud.datalabeling_v1beta1.types.LabelVideoClassificationOperationMetadata(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Details of a LabelVideoClassification operation metadata.
- basic_config¶
Basic human annotation config used in labeling request.
- class google.cloud.datalabeling_v1beta1.types.LabelVideoEventOperationMetadata(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Details of a LabelVideoEvent operation metadata.
- basic_config¶
Basic human annotation config used in labeling request.
- class google.cloud.datalabeling_v1beta1.types.LabelVideoObjectDetectionOperationMetadata(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Details of a LabelVideoObjectDetection operation metadata.
- basic_config¶
Basic human annotation config used in labeling request.
- class google.cloud.datalabeling_v1beta1.types.LabelVideoObjectTrackingOperationMetadata(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Details of a LabelVideoObjectTracking operation metadata.
- basic_config¶
Basic human annotation config used in labeling request.
- class google.cloud.datalabeling_v1beta1.types.LabelVideoRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Request message for LabelVideo.
This message has oneof fields (mutually exclusive fields). For each oneof, at most one member field can be set at the same time. Setting any member of the oneof automatically clears all other members.
- video_classification_config¶
Configuration for video classification task. One of video_classification_config, object_detection_config, object_tracking_config and event_config is required.
This field is a member of oneof
request_config
.
- object_detection_config¶
Configuration for video object detection task. One of video_classification_config, object_detection_config, object_tracking_config and event_config is required.
This field is a member of oneof
request_config
.
- object_tracking_config¶
Configuration for video object tracking task. One of video_classification_config, object_detection_config, object_tracking_config and event_config is required.
This field is a member of oneof
request_config
.
- event_config¶
Configuration for video event task. One of video_classification_config, object_detection_config, object_tracking_config and event_config is required.
This field is a member of oneof
request_config
.
- parent¶
Required. Name of the dataset to request labeling task, format: projects/{project_id}/datasets/{dataset_id}
- Type
- basic_config¶
Required. Basic human annotation config.
- feature¶
Required. The type of video labeling task.
- class Feature(value)[source]¶
Bases:
proto.enums.Enum
Video labeling task feature.
- Values:
- FEATURE_UNSPECIFIED (0):
No description available.
- CLASSIFICATION (1):
Label whole video or video segment with one or more labels.
- OBJECT_DETECTION (2):
Label objects with bounding box on image frames extracted from the video.
- OBJECT_TRACKING (3):
Label and track objects in video.
- EVENT (4):
Label the range of video for the specified events.
- class google.cloud.datalabeling_v1beta1.types.ListAnnotatedDatasetsRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Request message for ListAnnotatedDatasets.
- parent¶
Required. Name of the dataset to list annotated datasets, format: projects/{project_id}/datasets/{dataset_id}
- Type
- page_size¶
Optional. Requested page size. Server may return fewer results than requested. Default value is 100.
- Type
- page_token¶
Optional. A token identifying a page of results for the server to return. Typically obtained by [ListAnnotatedDatasetsResponse.next_page_token][google.cloud.datalabeling.v1beta1.ListAnnotatedDatasetsResponse.next_page_token] of the previous [DataLabelingService.ListAnnotatedDatasets] call. Return first page if empty.
- Type
- class google.cloud.datalabeling_v1beta1.types.ListAnnotatedDatasetsResponse(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Results of listing annotated datasets for a dataset.
- annotated_datasets¶
The list of annotated datasets to return.
- Type
MutableSequence[google.cloud.datalabeling_v1beta1.types.AnnotatedDataset]
- class google.cloud.datalabeling_v1beta1.types.ListAnnotationSpecSetsRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Request message for ListAnnotationSpecSets.
- page_size¶
Optional. Requested page size. Server may return fewer results than requested. Default value is 100.
- Type
- page_token¶
Optional. A token identifying a page of results for the server to return. Typically obtained by [ListAnnotationSpecSetsResponse.next_page_token][google.cloud.datalabeling.v1beta1.ListAnnotationSpecSetsResponse.next_page_token] of the previous [DataLabelingService.ListAnnotationSpecSets] call. Return first page if empty.
- Type
- class google.cloud.datalabeling_v1beta1.types.ListAnnotationSpecSetsResponse(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Results of listing annotation spec set under a project.
- annotation_spec_sets¶
The list of annotation spec sets.
- Type
MutableSequence[google.cloud.datalabeling_v1beta1.types.AnnotationSpecSet]
- class google.cloud.datalabeling_v1beta1.types.ListDataItemsRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Request message for ListDataItems.
- parent¶
Required. Name of the dataset to list data items, format: projects/{project_id}/datasets/{dataset_id}
- Type
- page_size¶
Optional. Requested page size. Server may return fewer results than requested. Default value is 100.
- Type
- page_token¶
Optional. A token identifying a page of results for the server to return. Typically obtained by [ListDataItemsResponse.next_page_token][google.cloud.datalabeling.v1beta1.ListDataItemsResponse.next_page_token] of the previous [DataLabelingService.ListDataItems] call. Return first page if empty.
- Type
- class google.cloud.datalabeling_v1beta1.types.ListDataItemsResponse(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Results of listing data items in a dataset.
- data_items¶
The list of data items to return.
- Type
MutableSequence[google.cloud.datalabeling_v1beta1.types.DataItem]
- class google.cloud.datalabeling_v1beta1.types.ListDatasetsRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Request message for ListDataset.
- page_size¶
Optional. Requested page size. Server may return fewer results than requested. Default value is 100.
- Type
- page_token¶
Optional. A token identifying a page of results for the server to return. Typically obtained by [ListDatasetsResponse.next_page_token][google.cloud.datalabeling.v1beta1.ListDatasetsResponse.next_page_token] of the previous [DataLabelingService.ListDatasets] call. Returns the first page if empty.
- Type
- class google.cloud.datalabeling_v1beta1.types.ListDatasetsResponse(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Results of listing datasets within a project.
- datasets¶
The list of datasets to return.
- Type
MutableSequence[google.cloud.datalabeling_v1beta1.types.Dataset]
- class google.cloud.datalabeling_v1beta1.types.ListEvaluationJobsRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Request message for ListEvaluationJobs.
- filter¶
Optional. You can filter the jobs to list by model_id (also known as model_name, as described in [EvaluationJob.modelVersion][google.cloud.datalabeling.v1beta1.EvaluationJob.model_version]) or by evaluation job state (as described in [EvaluationJob.state][google.cloud.datalabeling.v1beta1.EvaluationJob.state]). To filter by both criteria, use the
AND
operator or theOR
operator. For example, you can use the following string for your filter: “evaluationjob.model_id = {model_name} AND evaluationjob.state = {evaluation_job_state}”.- Type
- page_size¶
Optional. Requested page size. Server may return fewer results than requested. Default value is 100.
- Type
- page_token¶
Optional. A token identifying a page of results for the server to return. Typically obtained by the [nextPageToken][google.cloud.datalabeling.v1beta1.ListEvaluationJobsResponse.next_page_token] in the response to the previous request. The request returns the first page if this is empty.
- Type
- class google.cloud.datalabeling_v1beta1.types.ListEvaluationJobsResponse(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Results for listing evaluation jobs.
- evaluation_jobs¶
The list of evaluation jobs to return.
- Type
MutableSequence[google.cloud.datalabeling_v1beta1.types.EvaluationJob]
- class google.cloud.datalabeling_v1beta1.types.ListExamplesRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Request message for ListExamples.
- filter¶
Optional. An expression for filtering Examples. For annotated datasets that have annotation spec set, filter by annotation_spec.display_name is supported. Format “annotation_spec.display_name = {display_name}”.
- Type
- page_size¶
Optional. Requested page size. Server may return fewer results than requested. Default value is 100.
- Type
- page_token¶
Optional. A token identifying a page of results for the server to return. Typically obtained by [ListExamplesResponse.next_page_token][google.cloud.datalabeling.v1beta1.ListExamplesResponse.next_page_token] of the previous [DataLabelingService.ListExamples] call. Return first page if empty.
- Type
- class google.cloud.datalabeling_v1beta1.types.ListExamplesResponse(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Results of listing Examples in and annotated dataset.
- examples¶
The list of examples to return.
- Type
MutableSequence[google.cloud.datalabeling_v1beta1.types.Example]
- class google.cloud.datalabeling_v1beta1.types.ListInstructionsRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Request message for ListInstructions.
- page_size¶
Optional. Requested page size. Server may return fewer results than requested. Default value is 100.
- Type
- page_token¶
Optional. A token identifying a page of results for the server to return. Typically obtained by [ListInstructionsResponse.next_page_token][google.cloud.datalabeling.v1beta1.ListInstructionsResponse.next_page_token] of the previous [DataLabelingService.ListInstructions] call. Return first page if empty.
- Type
- class google.cloud.datalabeling_v1beta1.types.ListInstructionsResponse(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Results of listing instructions under a project.
- instructions¶
The list of Instructions to return.
- Type
MutableSequence[google.cloud.datalabeling_v1beta1.types.Instruction]
- class google.cloud.datalabeling_v1beta1.types.NormalizedBoundingPoly(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Normalized bounding polygon.
- normalized_vertices¶
The bounding polygon normalized vertices.
- Type
MutableSequence[google.cloud.datalabeling_v1beta1.types.NormalizedVertex]
- class google.cloud.datalabeling_v1beta1.types.NormalizedPolyline(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Normalized polyline.
- normalized_vertices¶
The normalized polyline vertices.
- Type
MutableSequence[google.cloud.datalabeling_v1beta1.types.NormalizedVertex]
- class google.cloud.datalabeling_v1beta1.types.NormalizedVertex(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
A vertex represents a 2D point in the image. NOTE: the normalized vertex coordinates are relative to the original image and range from 0 to 1.
- class google.cloud.datalabeling_v1beta1.types.ObjectDetectionConfig(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Config for video object detection human labeling task. Object detection will be conducted on the images extracted from the video, and those objects will be labeled with bounding boxes. User need to specify the number of images to be extracted per second as the extraction frame rate.
- class google.cloud.datalabeling_v1beta1.types.ObjectDetectionMetrics(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Metrics calculated for an image object detection (bounding box) model.
- pr_curve¶
Precision-recall curve.
- class google.cloud.datalabeling_v1beta1.types.ObjectTrackingConfig(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Config for video object tracking human labeling task.
- class google.cloud.datalabeling_v1beta1.types.ObjectTrackingFrame(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Video frame level annotation for object detection and tracking.
This message has oneof fields (mutually exclusive fields). For each oneof, at most one member field can be set at the same time. Setting any member of the oneof automatically clears all other members.
- time_offset¶
The time offset of this frame relative to the beginning of the video.
- class google.cloud.datalabeling_v1beta1.types.OperatorMetadata(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
General information useful for labels coming from contributors.
- score¶
Confidence score corresponding to a label. For examle, if 3 contributors have answered the question and 2 of them agree on the final label, the confidence score will be 0.67 (2/3).
- Type
- class google.cloud.datalabeling_v1beta1.types.OutputConfig(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
The configuration of output data.
This message has oneof fields (mutually exclusive fields). For each oneof, at most one member field can be set at the same time. Setting any member of the oneof automatically clears all other members.
- gcs_destination¶
Output to a file in Cloud Storage. Should be used for labeling output other than image segmentation.
This field is a member of oneof
destination
.
- class google.cloud.datalabeling_v1beta1.types.PauseEvaluationJobRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Request message for PauseEvaluationJob.
- class google.cloud.datalabeling_v1beta1.types.PdfInstruction(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Instruction from a PDF file.
- class google.cloud.datalabeling_v1beta1.types.Polyline(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
A line with multiple line segments.
- vertices¶
The polyline vertices.
- Type
MutableSequence[google.cloud.datalabeling_v1beta1.types.Vertex]
- class google.cloud.datalabeling_v1beta1.types.PolylineConfig(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Config for image polyline human labeling task.
- class google.cloud.datalabeling_v1beta1.types.PrCurve(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
- annotation_spec¶
The annotation spec of the label for which the precision-recall curve calculated. If this field is empty, that means the precision-recall curve is an aggregate curve for all labels.
- area_under_curve¶
Area under the precision-recall curve. Not to be confused with area under a receiver operating characteristic (ROC) curve.
- Type
- confidence_metrics_entries¶
Entries that make up the precision-recall graph. Each entry is a “point” on the graph drawn for a different
confidence_threshold
.- Type
MutableSequence[google.cloud.datalabeling_v1beta1.types.PrCurve.ConfidenceMetricsEntry]
- class ConfidenceMetricsEntry(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
- confidence_threshold¶
Threshold used for this entry.
For classification tasks, this is a classification threshold: a predicted label is categorized as positive or negative (in the context of this point on the PR curve) based on whether the label’s score meets this threshold.
For image object detection (bounding box) tasks, this is the [intersection-over-union
(IOU)](/vision/automl/object-detection/docs/evaluate#intersection-over-union) threshold for the context of this point on the PR curve.
- Type
- f1_score_at1¶
The harmonic mean of [recall_at1][google.cloud.datalabeling.v1beta1.PrCurve.ConfidenceMetricsEntry.recall_at1] and [precision_at1][google.cloud.datalabeling.v1beta1.PrCurve.ConfidenceMetricsEntry.precision_at1].
- Type
- class google.cloud.datalabeling_v1beta1.types.ResumeEvaluationJobRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Request message ResumeEvaluationJob.
- class google.cloud.datalabeling_v1beta1.types.SearchEvaluationsRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Request message for SearchEvaluation.
- filter¶
Optional. To search evaluations, you can filter by the following:
evaluation_job.evaluation_job_id (the last part of [EvaluationJob.name][google.cloud.datalabeling.v1beta1.EvaluationJob.name])
evaluation_job.model_id (the {model_name} portion of [EvaluationJob.modelVersion][google.cloud.datalabeling.v1beta1.EvaluationJob.model_version])
evaluation_job.evaluation_job_run_time_start (Minimum threshold for the [evaluationJobRunTime][google.cloud.datalabeling.v1beta1.Evaluation.evaluation_job_run_time] that created the evaluation)
evaluation_job.evaluation_job_run_time_end (Maximum threshold for the [evaluationJobRunTime][google.cloud.datalabeling.v1beta1.Evaluation.evaluation_job_run_time] that created the evaluation)
evaluation_job.job_state ([EvaluationJob.state][google.cloud.datalabeling.v1beta1.EvaluationJob.state])
annotation_spec.display_name (the Evaluation contains a metric for the annotation spec with this [displayName][google.cloud.datalabeling.v1beta1.AnnotationSpec.display_name])
To filter by multiple critiera, use the
AND
operator or theOR
operator. The following examples shows a string that filters by several critiera:“evaluationjob.evaluation_job_id = {evaluation_job_id} AND evaluationjob.model_id = {model_name} AND evaluationjob.evaluation_job_run_time_start = {timestamp_1} AND evaluationjob.evaluation_job_run_time_end = {timestamp_2} AND annotation_spec.display_name = {display_name}”.
- Type
- page_size¶
Optional. Requested page size. Server may return fewer results than requested. Default value is 100.
- Type
- page_token¶
Optional. A token identifying a page of results for the server to return. Typically obtained by the [nextPageToken][google.cloud.datalabeling.v1beta1.SearchEvaluationsResponse.next_page_token] of the response to a previous search request.
If you don’t specify this field, the API call requests the first page of the search.
- Type
- class google.cloud.datalabeling_v1beta1.types.SearchEvaluationsResponse(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Results of searching evaluations.
- evaluations¶
The list of evaluations matching the search.
- Type
MutableSequence[google.cloud.datalabeling_v1beta1.types.Evaluation]
- class google.cloud.datalabeling_v1beta1.types.SearchExampleComparisonsRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Request message of SearchExampleComparisons.
- parent¶
Required. Name of the [Evaluation][google.cloud.datalabeling.v1beta1.Evaluation] resource to search for example comparisons from. Format:
“projects/{project_id}/datasets/{dataset_id}/evaluations/{evaluation_id}”.
- Type
- page_size¶
Optional. Requested page size. Server may return fewer results than requested. Default value is 100.
- Type
- page_token¶
Optional. A token identifying a page of results for the server to return. Typically obtained by the [nextPageToken][SearchExampleComparisons.next_page_token] of the response to a previous search rquest.
If you don’t specify this field, the API call requests the first page of the search.
- Type
- class google.cloud.datalabeling_v1beta1.types.SearchExampleComparisonsResponse(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Results of searching example comparisons.
- example_comparisons¶
A list of example comparisons matching the search criteria.
- class ExampleComparison(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Example comparisons comparing ground truth output and predictions for a specific input.
- ground_truth_example¶
The ground truth output for the input.
- model_created_examples¶
Predictions by the model for the input.
- Type
MutableSequence[google.cloud.datalabeling_v1beta1.types.Example]
- class google.cloud.datalabeling_v1beta1.types.SegmentationConfig(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Config for image segmentation
- annotation_spec_set¶
Required. Annotation spec set resource name. format: projects/{project_id}/annotationSpecSets/{annotation_spec_set_id}
- Type
- class google.cloud.datalabeling_v1beta1.types.SentimentConfig(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Config for setting up sentiments.
- class google.cloud.datalabeling_v1beta1.types.SequentialSegment(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Start and end position in a sequence (e.g. text segment).
- class google.cloud.datalabeling_v1beta1.types.StringAggregationType(value)[source]¶
Bases:
proto.enums.Enum
- Values:
- STRING_AGGREGATION_TYPE_UNSPECIFIED (0):
No description available.
- MAJORITY_VOTE (1):
Majority vote to aggregate answers.
- UNANIMOUS_VOTE (2):
Unanimous answers will be adopted.
- NO_AGGREGATION (3):
Preserve all answers by crowd compute.
- class google.cloud.datalabeling_v1beta1.types.TextClassificationAnnotation(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Text classification annotation.
- annotation_spec¶
Label of the text.
- class google.cloud.datalabeling_v1beta1.types.TextClassificationConfig(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Config for text classification human labeling task.
- allow_multi_label¶
Optional. If allow_multi_label is true, contributors are able to choose multiple labels for one text segment.
- Type
- sentiment_config¶
Optional. Configs for sentiment selection.
- class google.cloud.datalabeling_v1beta1.types.TextEntityExtractionAnnotation(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Text entity extraction annotation.
- annotation_spec¶
Label of the text entities.
- sequential_segment¶
Position of the entity.
- class google.cloud.datalabeling_v1beta1.types.TextEntityExtractionConfig(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Config for text entity extraction human labeling task.
- class google.cloud.datalabeling_v1beta1.types.TextMetadata(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Metadata for the text.
- class google.cloud.datalabeling_v1beta1.types.TextPayload(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Container of information about a piece of text.
- class google.cloud.datalabeling_v1beta1.types.TimeSegment(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
A time period inside of an example that has a time dimension (e.g. video).
- start_time_offset¶
Start of the time segment (inclusive), represented as the duration since the example start.
- end_time_offset¶
End of the time segment (exclusive), represented as the duration since the example start.
- class google.cloud.datalabeling_v1beta1.types.UpdateEvaluationJobRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Request message for UpdateEvaluationJob.
- evaluation_job¶
Required. Evaluation job that is going to be updated.
- update_mask¶
Optional. Mask for which fields to update. You can only provide the following fields:
evaluationJobConfig.humanAnnotationConfig.instruction
evaluationJobConfig.exampleCount
evaluationJobConfig.exampleSamplePercentage
You can provide more than one of these fields by separating them with commas.
- class google.cloud.datalabeling_v1beta1.types.Vertex(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
A vertex represents a 2D point in the image. NOTE: the vertex coordinates are in the same scale as the original image.
- class google.cloud.datalabeling_v1beta1.types.VideoClassificationAnnotation(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Video classification annotation.
- time_segment¶
The time segment of the video to which the annotation applies.
- annotation_spec¶
Label of the segment specified by time_segment.
- class google.cloud.datalabeling_v1beta1.types.VideoClassificationConfig(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Config for video classification human labeling task. Currently two types of video classification are supported:
Assign labels on the entire video.
- Split the video into multiple video clips based on camera
shot, and assign labels on each video clip.
- annotation_spec_set_configs¶
Required. The list of annotation spec set configs. Since watching a video clip takes much longer time than an image, we support label with multiple AnnotationSpecSet at the same time. Labels in each AnnotationSpecSet will be shown in a group to contributors. Contributors can select one or more (depending on whether to allow multi label) from each group.
- class AnnotationSpecSetConfig(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Annotation spec set with the setting of allowing multi labels or not.
- class google.cloud.datalabeling_v1beta1.types.VideoEventAnnotation(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Video event annotation.
- annotation_spec¶
Label of the event in this annotation.
- time_segment¶
The time segment of the video to which the annotation applies.
- class google.cloud.datalabeling_v1beta1.types.VideoObjectTrackingAnnotation(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Video object tracking annotation.
- annotation_spec¶
Label of the object tracked in this annotation.
- time_segment¶
The time segment of the video to which object tracking applies.
- object_tracking_frames¶
The list of frames where this object track appears.
- Type
MutableSequence[google.cloud.datalabeling_v1beta1.types.ObjectTrackingFrame]
- class google.cloud.datalabeling_v1beta1.types.VideoPayload(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Container of information of a video.
- video_thumbnails¶
The list of video thumbnails.
- Type
MutableSequence[google.cloud.datalabeling_v1beta1.types.VideoThumbnail]
- class google.cloud.datalabeling_v1beta1.types.VideoThumbnail(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Container of information of a video thumbnail.
- time_offset¶
Time offset relative to the beginning of the video, corresponding to the video frame where the thumbnail has been extracted from.