As of January 1, 2020 this library no longer supports Python 2 on the latest released version. Library versions released prior to that date will continue to be available. For more information please visit Python 2 support on Google Cloud.

Source code for google.cloud.dialogflow_v2.services.conversation_models.async_client

# -*- coding: utf-8 -*-
# Copyright 2024 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from collections import OrderedDict
import re
from typing import (
    Callable,
    Dict,
    Mapping,
    MutableMapping,
    MutableSequence,
    Optional,
    Sequence,
    Tuple,
    Type,
    Union,
)

from google.api_core import exceptions as core_exceptions
from google.api_core import gapic_v1
from google.api_core import retry_async as retries
from google.api_core.client_options import ClientOptions
from google.auth import credentials as ga_credentials  # type: ignore
from google.oauth2 import service_account  # type: ignore

from google.cloud.dialogflow_v2 import gapic_version as package_version

try:
    OptionalRetry = Union[retries.AsyncRetry, gapic_v1.method._MethodDefault, None]
except AttributeError:  # pragma: NO COVER
    OptionalRetry = Union[retries.AsyncRetry, object, None]  # type: ignore

from google.api_core import operation  # type: ignore
from google.api_core import operation_async  # type: ignore
from google.cloud.location import locations_pb2  # type: ignore
from google.longrunning import operations_pb2  # type: ignore
from google.protobuf import empty_pb2  # type: ignore
from google.protobuf import timestamp_pb2  # type: ignore

from google.cloud.dialogflow_v2.services.conversation_models import pagers
from google.cloud.dialogflow_v2.types import (
    conversation_model as gcd_conversation_model,
)
from google.cloud.dialogflow_v2.types import conversation_model

from .client import ConversationModelsClient
from .transports.base import DEFAULT_CLIENT_INFO, ConversationModelsTransport
from .transports.grpc_asyncio import ConversationModelsGrpcAsyncIOTransport


[docs]class ConversationModelsAsyncClient: """Manages a collection of models for human agent assistant.""" _client: ConversationModelsClient # Copy defaults from the synchronous client for use here. # Note: DEFAULT_ENDPOINT is deprecated. Use _DEFAULT_ENDPOINT_TEMPLATE instead. DEFAULT_ENDPOINT = ConversationModelsClient.DEFAULT_ENDPOINT DEFAULT_MTLS_ENDPOINT = ConversationModelsClient.DEFAULT_MTLS_ENDPOINT _DEFAULT_ENDPOINT_TEMPLATE = ConversationModelsClient._DEFAULT_ENDPOINT_TEMPLATE _DEFAULT_UNIVERSE = ConversationModelsClient._DEFAULT_UNIVERSE conversation_dataset_path = staticmethod( ConversationModelsClient.conversation_dataset_path ) parse_conversation_dataset_path = staticmethod( ConversationModelsClient.parse_conversation_dataset_path ) conversation_model_path = staticmethod( ConversationModelsClient.conversation_model_path ) parse_conversation_model_path = staticmethod( ConversationModelsClient.parse_conversation_model_path ) conversation_model_evaluation_path = staticmethod( ConversationModelsClient.conversation_model_evaluation_path ) parse_conversation_model_evaluation_path = staticmethod( ConversationModelsClient.parse_conversation_model_evaluation_path ) document_path = staticmethod(ConversationModelsClient.document_path) parse_document_path = staticmethod(ConversationModelsClient.parse_document_path) common_billing_account_path = staticmethod( ConversationModelsClient.common_billing_account_path ) parse_common_billing_account_path = staticmethod( ConversationModelsClient.parse_common_billing_account_path ) common_folder_path = staticmethod(ConversationModelsClient.common_folder_path) parse_common_folder_path = staticmethod( ConversationModelsClient.parse_common_folder_path ) common_organization_path = staticmethod( ConversationModelsClient.common_organization_path ) parse_common_organization_path = staticmethod( ConversationModelsClient.parse_common_organization_path ) common_project_path = staticmethod(ConversationModelsClient.common_project_path) parse_common_project_path = staticmethod( ConversationModelsClient.parse_common_project_path ) common_location_path = staticmethod(ConversationModelsClient.common_location_path) parse_common_location_path = staticmethod( ConversationModelsClient.parse_common_location_path )
[docs] @classmethod def from_service_account_info(cls, info: dict, *args, **kwargs): """Creates an instance of this client using the provided credentials info. Args: info (dict): The service account private key info. args: Additional arguments to pass to the constructor. kwargs: Additional arguments to pass to the constructor. Returns: ConversationModelsAsyncClient: The constructed client. """ return ConversationModelsClient.from_service_account_info.__func__(ConversationModelsAsyncClient, info, *args, **kwargs) # type: ignore
[docs] @classmethod def from_service_account_file(cls, filename: str, *args, **kwargs): """Creates an instance of this client using the provided credentials file. Args: filename (str): The path to the service account private key json file. args: Additional arguments to pass to the constructor. kwargs: Additional arguments to pass to the constructor. Returns: ConversationModelsAsyncClient: The constructed client. """ return ConversationModelsClient.from_service_account_file.__func__(ConversationModelsAsyncClient, filename, *args, **kwargs) # type: ignore
from_service_account_json = from_service_account_file
[docs] @classmethod def get_mtls_endpoint_and_cert_source( cls, client_options: Optional[ClientOptions] = None ): """Return the API endpoint and client cert source for mutual TLS. The client cert source is determined in the following order: (1) if `GOOGLE_API_USE_CLIENT_CERTIFICATE` environment variable is not "true", the client cert source is None. (2) if `client_options.client_cert_source` is provided, use the provided one; if the default client cert source exists, use the default one; otherwise the client cert source is None. The API endpoint is determined in the following order: (1) if `client_options.api_endpoint` if provided, use the provided one. (2) if `GOOGLE_API_USE_CLIENT_CERTIFICATE` environment variable is "always", use the default mTLS endpoint; if the environment variable is "never", use the default API endpoint; otherwise if client cert source exists, use the default mTLS endpoint, otherwise use the default API endpoint. More details can be found at https://google.aip.dev/auth/4114. Args: client_options (google.api_core.client_options.ClientOptions): Custom options for the client. Only the `api_endpoint` and `client_cert_source` properties may be used in this method. Returns: Tuple[str, Callable[[], Tuple[bytes, bytes]]]: returns the API endpoint and the client cert source to use. Raises: google.auth.exceptions.MutualTLSChannelError: If any errors happen. """ return ConversationModelsClient.get_mtls_endpoint_and_cert_source(client_options) # type: ignore
@property def transport(self) -> ConversationModelsTransport: """Returns the transport used by the client instance. Returns: ConversationModelsTransport: The transport used by the client instance. """ return self._client.transport @property def api_endpoint(self): """Return the API endpoint used by the client instance. Returns: str: The API endpoint used by the client instance. """ return self._client._api_endpoint @property def universe_domain(self) -> str: """Return the universe domain used by the client instance. Returns: str: The universe domain used by the client instance. """ return self._client._universe_domain get_transport_class = ConversationModelsClient.get_transport_class def __init__( self, *, credentials: Optional[ga_credentials.Credentials] = None, transport: Optional[ Union[ str, ConversationModelsTransport, Callable[..., ConversationModelsTransport], ] ] = "grpc_asyncio", client_options: Optional[ClientOptions] = None, client_info: gapic_v1.client_info.ClientInfo = DEFAULT_CLIENT_INFO, ) -> None: """Instantiates the conversation models async client. Args: credentials (Optional[google.auth.credentials.Credentials]): The authorization credentials to attach to requests. These credentials identify the application to the service; if none are specified, the client will attempt to ascertain the credentials from the environment. transport (Optional[Union[str,ConversationModelsTransport,Callable[..., ConversationModelsTransport]]]): The transport to use, or a Callable that constructs and returns a new transport to use. If a Callable is given, it will be called with the same set of initialization arguments as used in the ConversationModelsTransport constructor. If set to None, a transport is chosen automatically. client_options (Optional[Union[google.api_core.client_options.ClientOptions, dict]]): Custom options for the client. 1. The ``api_endpoint`` property can be used to override the default endpoint provided by the client when ``transport`` is not explicitly provided. Only if this property is not set and ``transport`` was not explicitly provided, the endpoint is determined by the GOOGLE_API_USE_MTLS_ENDPOINT environment variable, which have one of the following values: "always" (always use the default mTLS endpoint), "never" (always use the default regular endpoint) and "auto" (auto-switch to the default mTLS endpoint if client certificate is present; this is the default value). 2. If the GOOGLE_API_USE_CLIENT_CERTIFICATE environment variable is "true", then the ``client_cert_source`` property can be used to provide a client certificate for mTLS transport. If not provided, the default SSL client certificate will be used if present. If GOOGLE_API_USE_CLIENT_CERTIFICATE is "false" or not set, no client certificate will be used. 3. The ``universe_domain`` property can be used to override the default "googleapis.com" universe. Note that ``api_endpoint`` property still takes precedence; and ``universe_domain`` is currently not supported for mTLS. client_info (google.api_core.gapic_v1.client_info.ClientInfo): The client info used to send a user-agent string along with API requests. If ``None``, then default info will be used. Generally, you only need to set this if you're developing your own client library. Raises: google.auth.exceptions.MutualTlsChannelError: If mutual TLS transport creation failed for any reason. """ self._client = ConversationModelsClient( credentials=credentials, transport=transport, client_options=client_options, client_info=client_info, )
[docs] async def create_conversation_model( self, request: Optional[ Union[gcd_conversation_model.CreateConversationModelRequest, dict] ] = None, *, parent: Optional[str] = None, conversation_model: Optional[gcd_conversation_model.ConversationModel] = None, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: Union[float, object] = gapic_v1.method.DEFAULT, metadata: Sequence[Tuple[str, str]] = (), ) -> operation_async.AsyncOperation: r"""Creates a model. This method is a `long-running operation <https://cloud.google.com/dialogflow/es/docs/how/long-running-operations>`__. The returned ``Operation`` type has the following method-specific fields: - ``metadata``: [CreateConversationModelOperationMetadata][google.cloud.dialogflow.v2.CreateConversationModelOperationMetadata] - ``response``: [ConversationModel][google.cloud.dialogflow.v2.ConversationModel] .. code-block:: python # This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import dialogflow_v2 async def sample_create_conversation_model(): # Create a client client = dialogflow_v2.ConversationModelsAsyncClient() # Initialize request argument(s) conversation_model = dialogflow_v2.ConversationModel() conversation_model.display_name = "display_name_value" conversation_model.datasets.dataset = "dataset_value" request = dialogflow_v2.CreateConversationModelRequest( conversation_model=conversation_model, ) # Make the request operation = client.create_conversation_model(request=request) print("Waiting for operation to complete...") response = (await operation).result() # Handle the response print(response) Args: request (Optional[Union[google.cloud.dialogflow_v2.types.CreateConversationModelRequest, dict]]): The request object. The request message for [ConversationModels.CreateConversationModel][google.cloud.dialogflow.v2.ConversationModels.CreateConversationModel] parent (:class:`str`): The project to create conversation model for. Format: ``projects/<Project ID>`` This corresponds to the ``parent`` field on the ``request`` instance; if ``request`` is provided, this should not be set. conversation_model (:class:`google.cloud.dialogflow_v2.types.ConversationModel`): Required. The conversation model to create. This corresponds to the ``conversation_model`` field on the ``request`` instance; if ``request`` is provided, this should not be set. retry (google.api_core.retry_async.AsyncRetry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. Returns: google.api_core.operation_async.AsyncOperation: An object representing a long-running operation. The result type for the operation will be :class:`google.cloud.dialogflow_v2.types.ConversationModel` Represents a conversation model. """ # Create or coerce a protobuf request object. # - Quick check: If we got a request object, we should *not* have # gotten any keyword arguments that map to the request. has_flattened_params = any([parent, conversation_model]) if request is not None and has_flattened_params: raise ValueError( "If the `request` argument is set, then none of " "the individual field arguments should be set." ) # - Use the request object if provided (there's no risk of modifying the input as # there are no flattened fields), or create one. if not isinstance( request, gcd_conversation_model.CreateConversationModelRequest ): request = gcd_conversation_model.CreateConversationModelRequest(request) # If we have keyword arguments corresponding to fields on the # request, apply these. if parent is not None: request.parent = parent if conversation_model is not None: request.conversation_model = conversation_model # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = self._client._transport._wrapped_methods[ self._client._transport.create_conversation_model ] # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata((("parent", request.parent),)), ) # Validate the universe domain. self._client._validate_universe_domain() # Send the request. response = await rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # Wrap the response in an operation future. response = operation_async.from_gapic( response, self._client._transport.operations_client, gcd_conversation_model.ConversationModel, metadata_type=gcd_conversation_model.CreateConversationModelOperationMetadata, ) # Done; return the response. return response
[docs] async def get_conversation_model( self, request: Optional[ Union[conversation_model.GetConversationModelRequest, dict] ] = None, *, name: Optional[str] = None, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: Union[float, object] = gapic_v1.method.DEFAULT, metadata: Sequence[Tuple[str, str]] = (), ) -> conversation_model.ConversationModel: r"""Gets conversation model. .. code-block:: python # This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import dialogflow_v2 async def sample_get_conversation_model(): # Create a client client = dialogflow_v2.ConversationModelsAsyncClient() # Initialize request argument(s) request = dialogflow_v2.GetConversationModelRequest( name="name_value", ) # Make the request response = await client.get_conversation_model(request=request) # Handle the response print(response) Args: request (Optional[Union[google.cloud.dialogflow_v2.types.GetConversationModelRequest, dict]]): The request object. The request message for [ConversationModels.GetConversationModel][google.cloud.dialogflow.v2.ConversationModels.GetConversationModel] name (:class:`str`): Required. The conversation model to retrieve. Format: ``projects/<Project ID>/conversationModels/<Conversation Model ID>`` This corresponds to the ``name`` field on the ``request`` instance; if ``request`` is provided, this should not be set. retry (google.api_core.retry_async.AsyncRetry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. Returns: google.cloud.dialogflow_v2.types.ConversationModel: Represents a conversation model. """ # Create or coerce a protobuf request object. # - Quick check: If we got a request object, we should *not* have # gotten any keyword arguments that map to the request. has_flattened_params = any([name]) if request is not None and has_flattened_params: raise ValueError( "If the `request` argument is set, then none of " "the individual field arguments should be set." ) # - Use the request object if provided (there's no risk of modifying the input as # there are no flattened fields), or create one. if not isinstance(request, conversation_model.GetConversationModelRequest): request = conversation_model.GetConversationModelRequest(request) # If we have keyword arguments corresponding to fields on the # request, apply these. if name is not None: request.name = name # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = self._client._transport._wrapped_methods[ self._client._transport.get_conversation_model ] # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata((("name", request.name),)), ) # Validate the universe domain. self._client._validate_universe_domain() # Send the request. response = await rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # Done; return the response. return response
[docs] async def list_conversation_models( self, request: Optional[ Union[conversation_model.ListConversationModelsRequest, dict] ] = None, *, parent: Optional[str] = None, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: Union[float, object] = gapic_v1.method.DEFAULT, metadata: Sequence[Tuple[str, str]] = (), ) -> pagers.ListConversationModelsAsyncPager: r"""Lists conversation models. .. code-block:: python # This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import dialogflow_v2 async def sample_list_conversation_models(): # Create a client client = dialogflow_v2.ConversationModelsAsyncClient() # Initialize request argument(s) request = dialogflow_v2.ListConversationModelsRequest( parent="parent_value", ) # Make the request page_result = client.list_conversation_models(request=request) # Handle the response async for response in page_result: print(response) Args: request (Optional[Union[google.cloud.dialogflow_v2.types.ListConversationModelsRequest, dict]]): The request object. The request message for [ConversationModels.ListConversationModels][google.cloud.dialogflow.v2.ConversationModels.ListConversationModels] parent (:class:`str`): Required. The project to list all conversation models for. Format: ``projects/<Project ID>`` This corresponds to the ``parent`` field on the ``request`` instance; if ``request`` is provided, this should not be set. retry (google.api_core.retry_async.AsyncRetry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. Returns: google.cloud.dialogflow_v2.services.conversation_models.pagers.ListConversationModelsAsyncPager: The response message for [ConversationModels.ListConversationModels][google.cloud.dialogflow.v2.ConversationModels.ListConversationModels] Iterating over this object will yield results and resolve additional pages automatically. """ # Create or coerce a protobuf request object. # - Quick check: If we got a request object, we should *not* have # gotten any keyword arguments that map to the request. has_flattened_params = any([parent]) if request is not None and has_flattened_params: raise ValueError( "If the `request` argument is set, then none of " "the individual field arguments should be set." ) # - Use the request object if provided (there's no risk of modifying the input as # there are no flattened fields), or create one. if not isinstance(request, conversation_model.ListConversationModelsRequest): request = conversation_model.ListConversationModelsRequest(request) # If we have keyword arguments corresponding to fields on the # request, apply these. if parent is not None: request.parent = parent # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = self._client._transport._wrapped_methods[ self._client._transport.list_conversation_models ] # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata((("parent", request.parent),)), ) # Validate the universe domain. self._client._validate_universe_domain() # Send the request. response = await rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # This method is paged; wrap the response in a pager, which provides # an `__aiter__` convenience method. response = pagers.ListConversationModelsAsyncPager( method=rpc, request=request, response=response, retry=retry, timeout=timeout, metadata=metadata, ) # Done; return the response. return response
[docs] async def delete_conversation_model( self, request: Optional[ Union[conversation_model.DeleteConversationModelRequest, dict] ] = None, *, name: Optional[str] = None, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: Union[float, object] = gapic_v1.method.DEFAULT, metadata: Sequence[Tuple[str, str]] = (), ) -> operation_async.AsyncOperation: r"""Deletes a model. This method is a `long-running operation <https://cloud.google.com/dialogflow/es/docs/how/long-running-operations>`__. The returned ``Operation`` type has the following method-specific fields: - ``metadata``: [DeleteConversationModelOperationMetadata][google.cloud.dialogflow.v2.DeleteConversationModelOperationMetadata] - ``response``: An `Empty message <https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#empty>`__ .. code-block:: python # This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import dialogflow_v2 async def sample_delete_conversation_model(): # Create a client client = dialogflow_v2.ConversationModelsAsyncClient() # Initialize request argument(s) request = dialogflow_v2.DeleteConversationModelRequest( name="name_value", ) # Make the request operation = client.delete_conversation_model(request=request) print("Waiting for operation to complete...") response = (await operation).result() # Handle the response print(response) Args: request (Optional[Union[google.cloud.dialogflow_v2.types.DeleteConversationModelRequest, dict]]): The request object. The request message for [ConversationModels.DeleteConversationModel][google.cloud.dialogflow.v2.ConversationModels.DeleteConversationModel] name (:class:`str`): Required. The conversation model to delete. Format: ``projects/<Project ID>/conversationModels/<Conversation Model ID>`` This corresponds to the ``name`` field on the ``request`` instance; if ``request`` is provided, this should not be set. retry (google.api_core.retry_async.AsyncRetry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. Returns: google.api_core.operation_async.AsyncOperation: An object representing a long-running operation. The result type for the operation will be :class:`google.protobuf.empty_pb2.Empty` A generic empty message that you can re-use to avoid defining duplicated empty messages in your APIs. A typical example is to use it as the request or the response type of an API method. For instance: service Foo { rpc Bar(google.protobuf.Empty) returns (google.protobuf.Empty); } """ # Create or coerce a protobuf request object. # - Quick check: If we got a request object, we should *not* have # gotten any keyword arguments that map to the request. has_flattened_params = any([name]) if request is not None and has_flattened_params: raise ValueError( "If the `request` argument is set, then none of " "the individual field arguments should be set." ) # - Use the request object if provided (there's no risk of modifying the input as # there are no flattened fields), or create one. if not isinstance(request, conversation_model.DeleteConversationModelRequest): request = conversation_model.DeleteConversationModelRequest(request) # If we have keyword arguments corresponding to fields on the # request, apply these. if name is not None: request.name = name # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = self._client._transport._wrapped_methods[ self._client._transport.delete_conversation_model ] # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata((("name", request.name),)), ) # Validate the universe domain. self._client._validate_universe_domain() # Send the request. response = await rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # Wrap the response in an operation future. response = operation_async.from_gapic( response, self._client._transport.operations_client, empty_pb2.Empty, metadata_type=conversation_model.DeleteConversationModelOperationMetadata, ) # Done; return the response. return response
[docs] async def deploy_conversation_model( self, request: Optional[ Union[conversation_model.DeployConversationModelRequest, dict] ] = None, *, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: Union[float, object] = gapic_v1.method.DEFAULT, metadata: Sequence[Tuple[str, str]] = (), ) -> operation_async.AsyncOperation: r"""Deploys a model. If a model is already deployed, deploying it has no effect. A model can only serve prediction requests after it gets deployed. For article suggestion, custom model will not be used unless it is deployed. This method is a `long-running operation <https://cloud.google.com/dialogflow/es/docs/how/long-running-operations>`__. The returned ``Operation`` type has the following method-specific fields: - ``metadata``: [DeployConversationModelOperationMetadata][google.cloud.dialogflow.v2.DeployConversationModelOperationMetadata] - ``response``: An `Empty message <https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#empty>`__ .. code-block:: python # This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import dialogflow_v2 async def sample_deploy_conversation_model(): # Create a client client = dialogflow_v2.ConversationModelsAsyncClient() # Initialize request argument(s) request = dialogflow_v2.DeployConversationModelRequest( name="name_value", ) # Make the request operation = client.deploy_conversation_model(request=request) print("Waiting for operation to complete...") response = (await operation).result() # Handle the response print(response) Args: request (Optional[Union[google.cloud.dialogflow_v2.types.DeployConversationModelRequest, dict]]): The request object. The request message for [ConversationModels.DeployConversationModel][google.cloud.dialogflow.v2.ConversationModels.DeployConversationModel] retry (google.api_core.retry_async.AsyncRetry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. Returns: google.api_core.operation_async.AsyncOperation: An object representing a long-running operation. The result type for the operation will be :class:`google.protobuf.empty_pb2.Empty` A generic empty message that you can re-use to avoid defining duplicated empty messages in your APIs. A typical example is to use it as the request or the response type of an API method. For instance: service Foo { rpc Bar(google.protobuf.Empty) returns (google.protobuf.Empty); } """ # Create or coerce a protobuf request object. # - Use the request object if provided (there's no risk of modifying the input as # there are no flattened fields), or create one. if not isinstance(request, conversation_model.DeployConversationModelRequest): request = conversation_model.DeployConversationModelRequest(request) # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = self._client._transport._wrapped_methods[ self._client._transport.deploy_conversation_model ] # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata((("name", request.name),)), ) # Validate the universe domain. self._client._validate_universe_domain() # Send the request. response = await rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # Wrap the response in an operation future. response = operation_async.from_gapic( response, self._client._transport.operations_client, empty_pb2.Empty, metadata_type=conversation_model.DeployConversationModelOperationMetadata, ) # Done; return the response. return response
[docs] async def undeploy_conversation_model( self, request: Optional[ Union[conversation_model.UndeployConversationModelRequest, dict] ] = None, *, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: Union[float, object] = gapic_v1.method.DEFAULT, metadata: Sequence[Tuple[str, str]] = (), ) -> operation_async.AsyncOperation: r"""Undeploys a model. If the model is not deployed this method has no effect. If the model is currently being used: - For article suggestion, article suggestion will fallback to the default model if model is undeployed. This method is a `long-running operation <https://cloud.google.com/dialogflow/es/docs/how/long-running-operations>`__. The returned ``Operation`` type has the following method-specific fields: - ``metadata``: [UndeployConversationModelOperationMetadata][google.cloud.dialogflow.v2.UndeployConversationModelOperationMetadata] - ``response``: An `Empty message <https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#empty>`__ .. code-block:: python # This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import dialogflow_v2 async def sample_undeploy_conversation_model(): # Create a client client = dialogflow_v2.ConversationModelsAsyncClient() # Initialize request argument(s) request = dialogflow_v2.UndeployConversationModelRequest( name="name_value", ) # Make the request operation = client.undeploy_conversation_model(request=request) print("Waiting for operation to complete...") response = (await operation).result() # Handle the response print(response) Args: request (Optional[Union[google.cloud.dialogflow_v2.types.UndeployConversationModelRequest, dict]]): The request object. The request message for [ConversationModels.UndeployConversationModel][google.cloud.dialogflow.v2.ConversationModels.UndeployConversationModel] retry (google.api_core.retry_async.AsyncRetry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. Returns: google.api_core.operation_async.AsyncOperation: An object representing a long-running operation. The result type for the operation will be :class:`google.protobuf.empty_pb2.Empty` A generic empty message that you can re-use to avoid defining duplicated empty messages in your APIs. A typical example is to use it as the request or the response type of an API method. For instance: service Foo { rpc Bar(google.protobuf.Empty) returns (google.protobuf.Empty); } """ # Create or coerce a protobuf request object. # - Use the request object if provided (there's no risk of modifying the input as # there are no flattened fields), or create one. if not isinstance(request, conversation_model.UndeployConversationModelRequest): request = conversation_model.UndeployConversationModelRequest(request) # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = self._client._transport._wrapped_methods[ self._client._transport.undeploy_conversation_model ] # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata((("name", request.name),)), ) # Validate the universe domain. self._client._validate_universe_domain() # Send the request. response = await rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # Wrap the response in an operation future. response = operation_async.from_gapic( response, self._client._transport.operations_client, empty_pb2.Empty, metadata_type=conversation_model.UndeployConversationModelOperationMetadata, ) # Done; return the response. return response
[docs] async def get_conversation_model_evaluation( self, request: Optional[ Union[conversation_model.GetConversationModelEvaluationRequest, dict] ] = None, *, name: Optional[str] = None, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: Union[float, object] = gapic_v1.method.DEFAULT, metadata: Sequence[Tuple[str, str]] = (), ) -> conversation_model.ConversationModelEvaluation: r"""Gets an evaluation of conversation model. .. code-block:: python # This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import dialogflow_v2 async def sample_get_conversation_model_evaluation(): # Create a client client = dialogflow_v2.ConversationModelsAsyncClient() # Initialize request argument(s) request = dialogflow_v2.GetConversationModelEvaluationRequest( name="name_value", ) # Make the request response = await client.get_conversation_model_evaluation(request=request) # Handle the response print(response) Args: request (Optional[Union[google.cloud.dialogflow_v2.types.GetConversationModelEvaluationRequest, dict]]): The request object. The request message for [ConversationModels.GetConversationModelEvaluation][google.cloud.dialogflow.v2.ConversationModels.GetConversationModelEvaluation] name (:class:`str`): Required. The conversation model evaluation resource name. Format: ``projects/<Project ID>/conversationModels/<Conversation Model ID>/evaluations/<Evaluation ID>`` This corresponds to the ``name`` field on the ``request`` instance; if ``request`` is provided, this should not be set. retry (google.api_core.retry_async.AsyncRetry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. Returns: google.cloud.dialogflow_v2.types.ConversationModelEvaluation: Represents evaluation result of a conversation model. """ # Create or coerce a protobuf request object. # - Quick check: If we got a request object, we should *not* have # gotten any keyword arguments that map to the request. has_flattened_params = any([name]) if request is not None and has_flattened_params: raise ValueError( "If the `request` argument is set, then none of " "the individual field arguments should be set." ) # - Use the request object if provided (there's no risk of modifying the input as # there are no flattened fields), or create one. if not isinstance( request, conversation_model.GetConversationModelEvaluationRequest ): request = conversation_model.GetConversationModelEvaluationRequest(request) # If we have keyword arguments corresponding to fields on the # request, apply these. if name is not None: request.name = name # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = self._client._transport._wrapped_methods[ self._client._transport.get_conversation_model_evaluation ] # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata((("name", request.name),)), ) # Validate the universe domain. self._client._validate_universe_domain() # Send the request. response = await rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # Done; return the response. return response
[docs] async def list_conversation_model_evaluations( self, request: Optional[ Union[conversation_model.ListConversationModelEvaluationsRequest, dict] ] = None, *, parent: Optional[str] = None, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: Union[float, object] = gapic_v1.method.DEFAULT, metadata: Sequence[Tuple[str, str]] = (), ) -> pagers.ListConversationModelEvaluationsAsyncPager: r"""Lists evaluations of a conversation model. .. code-block:: python # This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import dialogflow_v2 async def sample_list_conversation_model_evaluations(): # Create a client client = dialogflow_v2.ConversationModelsAsyncClient() # Initialize request argument(s) request = dialogflow_v2.ListConversationModelEvaluationsRequest( parent="parent_value", ) # Make the request page_result = client.list_conversation_model_evaluations(request=request) # Handle the response async for response in page_result: print(response) Args: request (Optional[Union[google.cloud.dialogflow_v2.types.ListConversationModelEvaluationsRequest, dict]]): The request object. The request message for [ConversationModels.ListConversationModelEvaluations][google.cloud.dialogflow.v2.ConversationModels.ListConversationModelEvaluations] parent (:class:`str`): Required. The conversation model resource name. Format: ``projects/<Project ID>/conversationModels/<Conversation Model ID>`` This corresponds to the ``parent`` field on the ``request`` instance; if ``request`` is provided, this should not be set. retry (google.api_core.retry_async.AsyncRetry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. Returns: google.cloud.dialogflow_v2.services.conversation_models.pagers.ListConversationModelEvaluationsAsyncPager: The response message for [ConversationModels.ListConversationModelEvaluations][google.cloud.dialogflow.v2.ConversationModels.ListConversationModelEvaluations] Iterating over this object will yield results and resolve additional pages automatically. """ # Create or coerce a protobuf request object. # - Quick check: If we got a request object, we should *not* have # gotten any keyword arguments that map to the request. has_flattened_params = any([parent]) if request is not None and has_flattened_params: raise ValueError( "If the `request` argument is set, then none of " "the individual field arguments should be set." ) # - Use the request object if provided (there's no risk of modifying the input as # there are no flattened fields), or create one. if not isinstance( request, conversation_model.ListConversationModelEvaluationsRequest ): request = conversation_model.ListConversationModelEvaluationsRequest( request ) # If we have keyword arguments corresponding to fields on the # request, apply these. if parent is not None: request.parent = parent # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = self._client._transport._wrapped_methods[ self._client._transport.list_conversation_model_evaluations ] # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata((("parent", request.parent),)), ) # Validate the universe domain. self._client._validate_universe_domain() # Send the request. response = await rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # This method is paged; wrap the response in a pager, which provides # an `__aiter__` convenience method. response = pagers.ListConversationModelEvaluationsAsyncPager( method=rpc, request=request, response=response, retry=retry, timeout=timeout, metadata=metadata, ) # Done; return the response. return response
[docs] async def create_conversation_model_evaluation( self, request: Optional[ Union[conversation_model.CreateConversationModelEvaluationRequest, dict] ] = None, *, parent: Optional[str] = None, conversation_model_evaluation: Optional[ conversation_model.ConversationModelEvaluation ] = None, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: Union[float, object] = gapic_v1.method.DEFAULT, metadata: Sequence[Tuple[str, str]] = (), ) -> operation_async.AsyncOperation: r"""Creates evaluation of a conversation model. .. code-block:: python # This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import dialogflow_v2 async def sample_create_conversation_model_evaluation(): # Create a client client = dialogflow_v2.ConversationModelsAsyncClient() # Initialize request argument(s) request = dialogflow_v2.CreateConversationModelEvaluationRequest( parent="parent_value", ) # Make the request operation = client.create_conversation_model_evaluation(request=request) print("Waiting for operation to complete...") response = (await operation).result() # Handle the response print(response) Args: request (Optional[Union[google.cloud.dialogflow_v2.types.CreateConversationModelEvaluationRequest, dict]]): The request object. The request message for [ConversationModels.CreateConversationModelEvaluation][google.cloud.dialogflow.v2.ConversationModels.CreateConversationModelEvaluation] parent (:class:`str`): Required. The conversation model resource name. Format: ``projects/<Project ID>/locations/<Location ID>/conversationModels/<Conversation Model ID>`` This corresponds to the ``parent`` field on the ``request`` instance; if ``request`` is provided, this should not be set. conversation_model_evaluation (:class:`google.cloud.dialogflow_v2.types.ConversationModelEvaluation`): Required. The conversation model evaluation to be created. This corresponds to the ``conversation_model_evaluation`` field on the ``request`` instance; if ``request`` is provided, this should not be set. retry (google.api_core.retry_async.AsyncRetry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. Returns: google.api_core.operation_async.AsyncOperation: An object representing a long-running operation. The result type for the operation will be :class:`google.cloud.dialogflow_v2.types.ConversationModelEvaluation` Represents evaluation result of a conversation model. """ # Create or coerce a protobuf request object. # - Quick check: If we got a request object, we should *not* have # gotten any keyword arguments that map to the request. has_flattened_params = any([parent, conversation_model_evaluation]) if request is not None and has_flattened_params: raise ValueError( "If the `request` argument is set, then none of " "the individual field arguments should be set." ) # - Use the request object if provided (there's no risk of modifying the input as # there are no flattened fields), or create one. if not isinstance( request, conversation_model.CreateConversationModelEvaluationRequest ): request = conversation_model.CreateConversationModelEvaluationRequest( request ) # If we have keyword arguments corresponding to fields on the # request, apply these. if parent is not None: request.parent = parent if conversation_model_evaluation is not None: request.conversation_model_evaluation = conversation_model_evaluation # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = self._client._transport._wrapped_methods[ self._client._transport.create_conversation_model_evaluation ] # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata((("parent", request.parent),)), ) # Validate the universe domain. self._client._validate_universe_domain() # Send the request. response = await rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # Wrap the response in an operation future. response = operation_async.from_gapic( response, self._client._transport.operations_client, conversation_model.ConversationModelEvaluation, metadata_type=conversation_model.CreateConversationModelEvaluationOperationMetadata, ) # Done; return the response. return response
[docs] async def list_operations( self, request: Optional[operations_pb2.ListOperationsRequest] = None, *, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: Union[float, object] = gapic_v1.method.DEFAULT, metadata: Sequence[Tuple[str, str]] = (), ) -> operations_pb2.ListOperationsResponse: r"""Lists operations that match the specified filter in the request. Args: request (:class:`~.operations_pb2.ListOperationsRequest`): The request object. Request message for `ListOperations` method. retry (google.api_core.retry_async.AsyncRetry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. Returns: ~.operations_pb2.ListOperationsResponse: Response message for ``ListOperations`` method. """ # Create or coerce a protobuf request object. # The request isn't a proto-plus wrapped type, # so it must be constructed via keyword expansion. if isinstance(request, dict): request = operations_pb2.ListOperationsRequest(**request) # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = self.transport._wrapped_methods[self._client._transport.list_operations] # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata((("name", request.name),)), ) # Validate the universe domain. self._client._validate_universe_domain() # Send the request. response = await rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # Done; return the response. return response
[docs] async def get_operation( self, request: Optional[operations_pb2.GetOperationRequest] = None, *, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: Union[float, object] = gapic_v1.method.DEFAULT, metadata: Sequence[Tuple[str, str]] = (), ) -> operations_pb2.Operation: r"""Gets the latest state of a long-running operation. Args: request (:class:`~.operations_pb2.GetOperationRequest`): The request object. Request message for `GetOperation` method. retry (google.api_core.retry_async.AsyncRetry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. Returns: ~.operations_pb2.Operation: An ``Operation`` object. """ # Create or coerce a protobuf request object. # The request isn't a proto-plus wrapped type, # so it must be constructed via keyword expansion. if isinstance(request, dict): request = operations_pb2.GetOperationRequest(**request) # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = self.transport._wrapped_methods[self._client._transport.get_operation] # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata((("name", request.name),)), ) # Validate the universe domain. self._client._validate_universe_domain() # Send the request. response = await rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # Done; return the response. return response
[docs] async def cancel_operation( self, request: Optional[operations_pb2.CancelOperationRequest] = None, *, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: Union[float, object] = gapic_v1.method.DEFAULT, metadata: Sequence[Tuple[str, str]] = (), ) -> None: r"""Starts asynchronous cancellation on a long-running operation. The server makes a best effort to cancel the operation, but success is not guaranteed. If the server doesn't support this method, it returns `google.rpc.Code.UNIMPLEMENTED`. Args: request (:class:`~.operations_pb2.CancelOperationRequest`): The request object. Request message for `CancelOperation` method. retry (google.api_core.retry_async.AsyncRetry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. Returns: None """ # Create or coerce a protobuf request object. # The request isn't a proto-plus wrapped type, # so it must be constructed via keyword expansion. if isinstance(request, dict): request = operations_pb2.CancelOperationRequest(**request) # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = self.transport._wrapped_methods[self._client._transport.cancel_operation] # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata((("name", request.name),)), ) # Validate the universe domain. self._client._validate_universe_domain() # Send the request. await rpc( request, retry=retry, timeout=timeout, metadata=metadata, )
[docs] async def get_location( self, request: Optional[locations_pb2.GetLocationRequest] = None, *, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: Union[float, object] = gapic_v1.method.DEFAULT, metadata: Sequence[Tuple[str, str]] = (), ) -> locations_pb2.Location: r"""Gets information about a location. Args: request (:class:`~.location_pb2.GetLocationRequest`): The request object. Request message for `GetLocation` method. retry (google.api_core.retry_async.AsyncRetry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. Returns: ~.location_pb2.Location: Location object. """ # Create or coerce a protobuf request object. # The request isn't a proto-plus wrapped type, # so it must be constructed via keyword expansion. if isinstance(request, dict): request = locations_pb2.GetLocationRequest(**request) # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = self.transport._wrapped_methods[self._client._transport.get_location] # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata((("name", request.name),)), ) # Validate the universe domain. self._client._validate_universe_domain() # Send the request. response = await rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # Done; return the response. return response
[docs] async def list_locations( self, request: Optional[locations_pb2.ListLocationsRequest] = None, *, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: Union[float, object] = gapic_v1.method.DEFAULT, metadata: Sequence[Tuple[str, str]] = (), ) -> locations_pb2.ListLocationsResponse: r"""Lists information about the supported locations for this service. Args: request (:class:`~.location_pb2.ListLocationsRequest`): The request object. Request message for `ListLocations` method. retry (google.api_core.retry_async.AsyncRetry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. Returns: ~.location_pb2.ListLocationsResponse: Response message for ``ListLocations`` method. """ # Create or coerce a protobuf request object. # The request isn't a proto-plus wrapped type, # so it must be constructed via keyword expansion. if isinstance(request, dict): request = locations_pb2.ListLocationsRequest(**request) # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = self.transport._wrapped_methods[self._client._transport.list_locations] # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata((("name", request.name),)), ) # Validate the universe domain. self._client._validate_universe_domain() # Send the request. response = await rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # Done; return the response. return response
async def __aenter__(self) -> "ConversationModelsAsyncClient": return self async def __aexit__(self, exc_type, exc, tb): await self.transport.close()
DEFAULT_CLIENT_INFO = gapic_v1.client_info.ClientInfo( gapic_version=package_version.__version__ ) __all__ = ("ConversationModelsAsyncClient",)