As of January 1, 2020 this library no longer supports Python 2 on the latest released version. Library versions released prior to that date will continue to be available. For more information please visit Python 2 support on Google Cloud.

Source code for google.ai.generativelanguage_v1beta.services.generative_service.async_client

# -*- coding: utf-8 -*-
# Copyright 2025 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from collections import OrderedDict
import logging as std_logging
import re
from typing import (
    AsyncIterable,
    AsyncIterator,
    Awaitable,
    Callable,
    Dict,
    Mapping,
    MutableMapping,
    MutableSequence,
    Optional,
    Sequence,
    Tuple,
    Type,
    Union,
)

from google.api_core import exceptions as core_exceptions
from google.api_core import gapic_v1
from google.api_core import retry_async as retries
from google.api_core.client_options import ClientOptions
from google.auth import credentials as ga_credentials  # type: ignore
from google.oauth2 import service_account  # type: ignore
import google.protobuf

from google.ai.generativelanguage_v1beta import gapic_version as package_version

try:
    OptionalRetry = Union[retries.AsyncRetry, gapic_v1.method._MethodDefault, None]
except AttributeError:  # pragma: NO COVER
    OptionalRetry = Union[retries.AsyncRetry, object, None]  # type: ignore

from google.longrunning import operations_pb2  # type: ignore

from google.ai.generativelanguage_v1beta.types import generative_service, safety
from google.ai.generativelanguage_v1beta.types import content
from google.ai.generativelanguage_v1beta.types import content as gag_content

from .client import GenerativeServiceClient
from .transports.base import DEFAULT_CLIENT_INFO, GenerativeServiceTransport
from .transports.grpc_asyncio import GenerativeServiceGrpcAsyncIOTransport

try:
    from google.api_core import client_logging  # type: ignore

    CLIENT_LOGGING_SUPPORTED = True  # pragma: NO COVER
except ImportError:  # pragma: NO COVER
    CLIENT_LOGGING_SUPPORTED = False

_LOGGER = std_logging.getLogger(__name__)


[docs]class GenerativeServiceAsyncClient: """API for using Large Models that generate multimodal content and have additional capabilities beyond text generation. """ _client: GenerativeServiceClient # Copy defaults from the synchronous client for use here. # Note: DEFAULT_ENDPOINT is deprecated. Use _DEFAULT_ENDPOINT_TEMPLATE instead. DEFAULT_ENDPOINT = GenerativeServiceClient.DEFAULT_ENDPOINT DEFAULT_MTLS_ENDPOINT = GenerativeServiceClient.DEFAULT_MTLS_ENDPOINT _DEFAULT_ENDPOINT_TEMPLATE = GenerativeServiceClient._DEFAULT_ENDPOINT_TEMPLATE _DEFAULT_UNIVERSE = GenerativeServiceClient._DEFAULT_UNIVERSE cached_content_path = staticmethod(GenerativeServiceClient.cached_content_path) parse_cached_content_path = staticmethod( GenerativeServiceClient.parse_cached_content_path ) model_path = staticmethod(GenerativeServiceClient.model_path) parse_model_path = staticmethod(GenerativeServiceClient.parse_model_path) common_billing_account_path = staticmethod( GenerativeServiceClient.common_billing_account_path ) parse_common_billing_account_path = staticmethod( GenerativeServiceClient.parse_common_billing_account_path ) common_folder_path = staticmethod(GenerativeServiceClient.common_folder_path) parse_common_folder_path = staticmethod( GenerativeServiceClient.parse_common_folder_path ) common_organization_path = staticmethod( GenerativeServiceClient.common_organization_path ) parse_common_organization_path = staticmethod( GenerativeServiceClient.parse_common_organization_path ) common_project_path = staticmethod(GenerativeServiceClient.common_project_path) parse_common_project_path = staticmethod( GenerativeServiceClient.parse_common_project_path ) common_location_path = staticmethod(GenerativeServiceClient.common_location_path) parse_common_location_path = staticmethod( GenerativeServiceClient.parse_common_location_path )
[docs] @classmethod def from_service_account_info(cls, info: dict, *args, **kwargs): """Creates an instance of this client using the provided credentials info. Args: info (dict): The service account private key info. args: Additional arguments to pass to the constructor. kwargs: Additional arguments to pass to the constructor. Returns: GenerativeServiceAsyncClient: The constructed client. """ return GenerativeServiceClient.from_service_account_info.__func__(GenerativeServiceAsyncClient, info, *args, **kwargs) # type: ignore
[docs] @classmethod def from_service_account_file(cls, filename: str, *args, **kwargs): """Creates an instance of this client using the provided credentials file. Args: filename (str): The path to the service account private key json file. args: Additional arguments to pass to the constructor. kwargs: Additional arguments to pass to the constructor. Returns: GenerativeServiceAsyncClient: The constructed client. """ return GenerativeServiceClient.from_service_account_file.__func__(GenerativeServiceAsyncClient, filename, *args, **kwargs) # type: ignore
from_service_account_json = from_service_account_file
[docs] @classmethod def get_mtls_endpoint_and_cert_source( cls, client_options: Optional[ClientOptions] = None ): """Return the API endpoint and client cert source for mutual TLS. The client cert source is determined in the following order: (1) if `GOOGLE_API_USE_CLIENT_CERTIFICATE` environment variable is not "true", the client cert source is None. (2) if `client_options.client_cert_source` is provided, use the provided one; if the default client cert source exists, use the default one; otherwise the client cert source is None. The API endpoint is determined in the following order: (1) if `client_options.api_endpoint` if provided, use the provided one. (2) if `GOOGLE_API_USE_CLIENT_CERTIFICATE` environment variable is "always", use the default mTLS endpoint; if the environment variable is "never", use the default API endpoint; otherwise if client cert source exists, use the default mTLS endpoint, otherwise use the default API endpoint. More details can be found at https://google.aip.dev/auth/4114. Args: client_options (google.api_core.client_options.ClientOptions): Custom options for the client. Only the `api_endpoint` and `client_cert_source` properties may be used in this method. Returns: Tuple[str, Callable[[], Tuple[bytes, bytes]]]: returns the API endpoint and the client cert source to use. Raises: google.auth.exceptions.MutualTLSChannelError: If any errors happen. """ return GenerativeServiceClient.get_mtls_endpoint_and_cert_source(client_options) # type: ignore
@property def transport(self) -> GenerativeServiceTransport: """Returns the transport used by the client instance. Returns: GenerativeServiceTransport: The transport used by the client instance. """ return self._client.transport @property def api_endpoint(self): """Return the API endpoint used by the client instance. Returns: str: The API endpoint used by the client instance. """ return self._client._api_endpoint @property def universe_domain(self) -> str: """Return the universe domain used by the client instance. Returns: str: The universe domain used by the client instance. """ return self._client._universe_domain get_transport_class = GenerativeServiceClient.get_transport_class def __init__( self, *, credentials: Optional[ga_credentials.Credentials] = None, transport: Optional[ Union[ str, GenerativeServiceTransport, Callable[..., GenerativeServiceTransport], ] ] = "grpc_asyncio", client_options: Optional[ClientOptions] = None, client_info: gapic_v1.client_info.ClientInfo = DEFAULT_CLIENT_INFO, ) -> None: """Instantiates the generative service async client. Args: credentials (Optional[google.auth.credentials.Credentials]): The authorization credentials to attach to requests. These credentials identify the application to the service; if none are specified, the client will attempt to ascertain the credentials from the environment. transport (Optional[Union[str,GenerativeServiceTransport,Callable[..., GenerativeServiceTransport]]]): The transport to use, or a Callable that constructs and returns a new transport to use. If a Callable is given, it will be called with the same set of initialization arguments as used in the GenerativeServiceTransport constructor. If set to None, a transport is chosen automatically. client_options (Optional[Union[google.api_core.client_options.ClientOptions, dict]]): Custom options for the client. 1. The ``api_endpoint`` property can be used to override the default endpoint provided by the client when ``transport`` is not explicitly provided. Only if this property is not set and ``transport`` was not explicitly provided, the endpoint is determined by the GOOGLE_API_USE_MTLS_ENDPOINT environment variable, which have one of the following values: "always" (always use the default mTLS endpoint), "never" (always use the default regular endpoint) and "auto" (auto-switch to the default mTLS endpoint if client certificate is present; this is the default value). 2. If the GOOGLE_API_USE_CLIENT_CERTIFICATE environment variable is "true", then the ``client_cert_source`` property can be used to provide a client certificate for mTLS transport. If not provided, the default SSL client certificate will be used if present. If GOOGLE_API_USE_CLIENT_CERTIFICATE is "false" or not set, no client certificate will be used. 3. The ``universe_domain`` property can be used to override the default "googleapis.com" universe. Note that ``api_endpoint`` property still takes precedence; and ``universe_domain`` is currently not supported for mTLS. client_info (google.api_core.gapic_v1.client_info.ClientInfo): The client info used to send a user-agent string along with API requests. If ``None``, then default info will be used. Generally, you only need to set this if you're developing your own client library. Raises: google.auth.exceptions.MutualTlsChannelError: If mutual TLS transport creation failed for any reason. """ self._client = GenerativeServiceClient( credentials=credentials, transport=transport, client_options=client_options, client_info=client_info, ) if CLIENT_LOGGING_SUPPORTED and _LOGGER.isEnabledFor( std_logging.DEBUG ): # pragma: NO COVER _LOGGER.debug( "Created client `google.ai.generativelanguage_v1beta.GenerativeServiceAsyncClient`.", extra={ "serviceName": "google.ai.generativelanguage.v1beta.GenerativeService", "universeDomain": getattr( self._client._transport._credentials, "universe_domain", "" ), "credentialsType": f"{type(self._client._transport._credentials).__module__}.{type(self._client._transport._credentials).__qualname__}", "credentialsInfo": getattr( self.transport._credentials, "get_cred_info", lambda: None )(), } if hasattr(self._client._transport, "_credentials") else { "serviceName": "google.ai.generativelanguage.v1beta.GenerativeService", "credentialsType": None, }, )
[docs] async def generate_content( self, request: Optional[ Union[generative_service.GenerateContentRequest, dict] ] = None, *, model: Optional[str] = None, contents: Optional[MutableSequence[content.Content]] = None, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: Union[float, object] = gapic_v1.method.DEFAULT, metadata: Sequence[Tuple[str, Union[str, bytes]]] = (), ) -> generative_service.GenerateContentResponse: r"""Generates a model response given an input ``GenerateContentRequest``. Refer to the `text generation guide <https://ai.google.dev/gemini-api/docs/text-generation>`__ for detailed usage information. Input capabilities differ between models, including tuned models. Refer to the `model guide <https://ai.google.dev/gemini-api/docs/models/gemini>`__ and `tuning guide <https://ai.google.dev/gemini-api/docs/model-tuning>`__ for details. .. code-block:: python # This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.ai import generativelanguage_v1beta async def sample_generate_content(): # Create a client client = generativelanguage_v1beta.GenerativeServiceAsyncClient() # Initialize request argument(s) request = generativelanguage_v1beta.GenerateContentRequest( model="model_value", ) # Make the request response = await client.generate_content(request=request) # Handle the response print(response) Args: request (Optional[Union[google.ai.generativelanguage_v1beta.types.GenerateContentRequest, dict]]): The request object. Request to generate a completion from the model. model (:class:`str`): Required. The name of the ``Model`` to use for generating the completion. Format: ``models/{model}``. This corresponds to the ``model`` field on the ``request`` instance; if ``request`` is provided, this should not be set. contents (:class:`MutableSequence[google.ai.generativelanguage_v1beta.types.Content]`): Required. The content of the current conversation with the model. For single-turn queries, this is a single instance. For multi-turn queries like `chat <https://ai.google.dev/gemini-api/docs/text-generation#chat>`__, this is a repeated field that contains the conversation history and the latest request. This corresponds to the ``contents`` field on the ``request`` instance; if ``request`` is provided, this should not be set. retry (google.api_core.retry_async.AsyncRetry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, Union[str, bytes]]]): Key/value pairs which should be sent along with the request as metadata. Normally, each value must be of type `str`, but for metadata keys ending with the suffix `-bin`, the corresponding values must be of type `bytes`. Returns: google.ai.generativelanguage_v1beta.types.GenerateContentResponse: Response from the model supporting multiple candidate responses. Safety ratings and content filtering are reported for both prompt in GenerateContentResponse.prompt_feedback and for each candidate in finish_reason and in safety_ratings. The API: - Returns either all requested candidates or none of them - Returns no candidates at all only if there was something wrong with the prompt (check prompt_feedback) - Reports feedback on each candidate in finish_reason and safety_ratings. """ # Create or coerce a protobuf request object. # - Quick check: If we got a request object, we should *not* have # gotten any keyword arguments that map to the request. flattened_params = [model, contents] has_flattened_params = ( len([param for param in flattened_params if param is not None]) > 0 ) if request is not None and has_flattened_params: raise ValueError( "If the `request` argument is set, then none of " "the individual field arguments should be set." ) # - Use the request object if provided (there's no risk of modifying the input as # there are no flattened fields), or create one. if not isinstance(request, generative_service.GenerateContentRequest): request = generative_service.GenerateContentRequest(request) # If we have keyword arguments corresponding to fields on the # request, apply these. if model is not None: request.model = model if contents: request.contents.extend(contents) # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = self._client._transport._wrapped_methods[ self._client._transport.generate_content ] # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata((("model", request.model),)), ) # Validate the universe domain. self._client._validate_universe_domain() # Send the request. response = await rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # Done; return the response. return response
[docs] async def generate_answer( self, request: Optional[Union[generative_service.GenerateAnswerRequest, dict]] = None, *, model: Optional[str] = None, contents: Optional[MutableSequence[content.Content]] = None, safety_settings: Optional[MutableSequence[safety.SafetySetting]] = None, answer_style: Optional[ generative_service.GenerateAnswerRequest.AnswerStyle ] = None, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: Union[float, object] = gapic_v1.method.DEFAULT, metadata: Sequence[Tuple[str, Union[str, bytes]]] = (), ) -> generative_service.GenerateAnswerResponse: r"""Generates a grounded answer from the model given an input ``GenerateAnswerRequest``. .. code-block:: python # This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.ai import generativelanguage_v1beta async def sample_generate_answer(): # Create a client client = generativelanguage_v1beta.GenerativeServiceAsyncClient() # Initialize request argument(s) request = generativelanguage_v1beta.GenerateAnswerRequest( model="model_value", answer_style="VERBOSE", ) # Make the request response = await client.generate_answer(request=request) # Handle the response print(response) Args: request (Optional[Union[google.ai.generativelanguage_v1beta.types.GenerateAnswerRequest, dict]]): The request object. Request to generate a grounded answer from the ``Model``. model (:class:`str`): Required. The name of the ``Model`` to use for generating the grounded response. Format: ``model=models/{model}``. This corresponds to the ``model`` field on the ``request`` instance; if ``request`` is provided, this should not be set. contents (:class:`MutableSequence[google.ai.generativelanguage_v1beta.types.Content]`): Required. The content of the current conversation with the ``Model``. For single-turn queries, this is a single question to answer. For multi-turn queries, this is a repeated field that contains conversation history and the last ``Content`` in the list containing the question. Note: ``GenerateAnswer`` only supports queries in English. This corresponds to the ``contents`` field on the ``request`` instance; if ``request`` is provided, this should not be set. safety_settings (:class:`MutableSequence[google.ai.generativelanguage_v1beta.types.SafetySetting]`): Optional. A list of unique ``SafetySetting`` instances for blocking unsafe content. This will be enforced on the ``GenerateAnswerRequest.contents`` and ``GenerateAnswerResponse.candidate``. There should not be more than one setting for each ``SafetyCategory`` type. The API will block any contents and responses that fail to meet the thresholds set by these settings. This list overrides the default settings for each ``SafetyCategory`` specified in the safety_settings. If there is no ``SafetySetting`` for a given ``SafetyCategory`` provided in the list, the API will use the default safety setting for that category. Harm categories HARM_CATEGORY_HATE_SPEECH, HARM_CATEGORY_SEXUALLY_EXPLICIT, HARM_CATEGORY_DANGEROUS_CONTENT, HARM_CATEGORY_HARASSMENT are supported. Refer to the `guide <https://ai.google.dev/gemini-api/docs/safety-settings>`__ for detailed information on available safety settings. Also refer to the `Safety guidance <https://ai.google.dev/gemini-api/docs/safety-guidance>`__ to learn how to incorporate safety considerations in your AI applications. This corresponds to the ``safety_settings`` field on the ``request`` instance; if ``request`` is provided, this should not be set. answer_style (:class:`google.ai.generativelanguage_v1beta.types.GenerateAnswerRequest.AnswerStyle`): Required. Style in which answers should be returned. This corresponds to the ``answer_style`` field on the ``request`` instance; if ``request`` is provided, this should not be set. retry (google.api_core.retry_async.AsyncRetry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, Union[str, bytes]]]): Key/value pairs which should be sent along with the request as metadata. Normally, each value must be of type `str`, but for metadata keys ending with the suffix `-bin`, the corresponding values must be of type `bytes`. Returns: google.ai.generativelanguage_v1beta.types.GenerateAnswerResponse: Response from the model for a grounded answer. """ # Create or coerce a protobuf request object. # - Quick check: If we got a request object, we should *not* have # gotten any keyword arguments that map to the request. flattened_params = [model, contents, safety_settings, answer_style] has_flattened_params = ( len([param for param in flattened_params if param is not None]) > 0 ) if request is not None and has_flattened_params: raise ValueError( "If the `request` argument is set, then none of " "the individual field arguments should be set." ) # - Use the request object if provided (there's no risk of modifying the input as # there are no flattened fields), or create one. if not isinstance(request, generative_service.GenerateAnswerRequest): request = generative_service.GenerateAnswerRequest(request) # If we have keyword arguments corresponding to fields on the # request, apply these. if model is not None: request.model = model if answer_style is not None: request.answer_style = answer_style if contents: request.contents.extend(contents) if safety_settings: request.safety_settings.extend(safety_settings) # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = self._client._transport._wrapped_methods[ self._client._transport.generate_answer ] # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata((("model", request.model),)), ) # Validate the universe domain. self._client._validate_universe_domain() # Send the request. response = await rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # Done; return the response. return response
[docs] def stream_generate_content( self, request: Optional[ Union[generative_service.GenerateContentRequest, dict] ] = None, *, model: Optional[str] = None, contents: Optional[MutableSequence[content.Content]] = None, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: Union[float, object] = gapic_v1.method.DEFAULT, metadata: Sequence[Tuple[str, Union[str, bytes]]] = (), ) -> Awaitable[AsyncIterable[generative_service.GenerateContentResponse]]: r"""Generates a `streamed response <https://ai.google.dev/gemini-api/docs/text-generation?lang=python#generate-a-text-stream>`__ from the model given an input ``GenerateContentRequest``. .. code-block:: python # This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.ai import generativelanguage_v1beta async def sample_stream_generate_content(): # Create a client client = generativelanguage_v1beta.GenerativeServiceAsyncClient() # Initialize request argument(s) request = generativelanguage_v1beta.GenerateContentRequest( model="model_value", ) # Make the request stream = await client.stream_generate_content(request=request) # Handle the response async for response in stream: print(response) Args: request (Optional[Union[google.ai.generativelanguage_v1beta.types.GenerateContentRequest, dict]]): The request object. Request to generate a completion from the model. model (:class:`str`): Required. The name of the ``Model`` to use for generating the completion. Format: ``models/{model}``. This corresponds to the ``model`` field on the ``request`` instance; if ``request`` is provided, this should not be set. contents (:class:`MutableSequence[google.ai.generativelanguage_v1beta.types.Content]`): Required. The content of the current conversation with the model. For single-turn queries, this is a single instance. For multi-turn queries like `chat <https://ai.google.dev/gemini-api/docs/text-generation#chat>`__, this is a repeated field that contains the conversation history and the latest request. This corresponds to the ``contents`` field on the ``request`` instance; if ``request`` is provided, this should not be set. retry (google.api_core.retry_async.AsyncRetry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, Union[str, bytes]]]): Key/value pairs which should be sent along with the request as metadata. Normally, each value must be of type `str`, but for metadata keys ending with the suffix `-bin`, the corresponding values must be of type `bytes`. Returns: AsyncIterable[google.ai.generativelanguage_v1beta.types.GenerateContentResponse]: Response from the model supporting multiple candidate responses. Safety ratings and content filtering are reported for both prompt in GenerateContentResponse.prompt_feedback and for each candidate in finish_reason and in safety_ratings. The API: - Returns either all requested candidates or none of them - Returns no candidates at all only if there was something wrong with the prompt (check prompt_feedback) - Reports feedback on each candidate in finish_reason and safety_ratings. """ # Create or coerce a protobuf request object. # - Quick check: If we got a request object, we should *not* have # gotten any keyword arguments that map to the request. flattened_params = [model, contents] has_flattened_params = ( len([param for param in flattened_params if param is not None]) > 0 ) if request is not None and has_flattened_params: raise ValueError( "If the `request` argument is set, then none of " "the individual field arguments should be set." ) # - Use the request object if provided (there's no risk of modifying the input as # there are no flattened fields), or create one. if not isinstance(request, generative_service.GenerateContentRequest): request = generative_service.GenerateContentRequest(request) # If we have keyword arguments corresponding to fields on the # request, apply these. if model is not None: request.model = model if contents: request.contents.extend(contents) # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = self._client._transport._wrapped_methods[ self._client._transport.stream_generate_content ] # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata((("model", request.model),)), ) # Validate the universe domain. self._client._validate_universe_domain() # Send the request. response = rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # Done; return the response. return response
[docs] async def embed_content( self, request: Optional[Union[generative_service.EmbedContentRequest, dict]] = None, *, model: Optional[str] = None, content: Optional[gag_content.Content] = None, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: Union[float, object] = gapic_v1.method.DEFAULT, metadata: Sequence[Tuple[str, Union[str, bytes]]] = (), ) -> generative_service.EmbedContentResponse: r"""Generates a text embedding vector from the input ``Content`` using the specified `Gemini Embedding model <https://ai.google.dev/gemini-api/docs/models/gemini#text-embedding>`__. .. code-block:: python # This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.ai import generativelanguage_v1beta async def sample_embed_content(): # Create a client client = generativelanguage_v1beta.GenerativeServiceAsyncClient() # Initialize request argument(s) request = generativelanguage_v1beta.EmbedContentRequest( model="model_value", ) # Make the request response = await client.embed_content(request=request) # Handle the response print(response) Args: request (Optional[Union[google.ai.generativelanguage_v1beta.types.EmbedContentRequest, dict]]): The request object. Request containing the ``Content`` for the model to embed. model (:class:`str`): Required. The model's resource name. This serves as an ID for the Model to use. This name should match a model name returned by the ``ListModels`` method. Format: ``models/{model}`` This corresponds to the ``model`` field on the ``request`` instance; if ``request`` is provided, this should not be set. content (:class:`google.ai.generativelanguage_v1beta.types.Content`): Required. The content to embed. Only the ``parts.text`` fields will be counted. This corresponds to the ``content`` field on the ``request`` instance; if ``request`` is provided, this should not be set. retry (google.api_core.retry_async.AsyncRetry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, Union[str, bytes]]]): Key/value pairs which should be sent along with the request as metadata. Normally, each value must be of type `str`, but for metadata keys ending with the suffix `-bin`, the corresponding values must be of type `bytes`. Returns: google.ai.generativelanguage_v1beta.types.EmbedContentResponse: The response to an EmbedContentRequest. """ # Create or coerce a protobuf request object. # - Quick check: If we got a request object, we should *not* have # gotten any keyword arguments that map to the request. flattened_params = [model, content] has_flattened_params = ( len([param for param in flattened_params if param is not None]) > 0 ) if request is not None and has_flattened_params: raise ValueError( "If the `request` argument is set, then none of " "the individual field arguments should be set." ) # - Use the request object if provided (there's no risk of modifying the input as # there are no flattened fields), or create one. if not isinstance(request, generative_service.EmbedContentRequest): request = generative_service.EmbedContentRequest(request) # If we have keyword arguments corresponding to fields on the # request, apply these. if model is not None: request.model = model if content is not None: request.content = content # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = self._client._transport._wrapped_methods[ self._client._transport.embed_content ] # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata((("model", request.model),)), ) # Validate the universe domain. self._client._validate_universe_domain() # Send the request. response = await rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # Done; return the response. return response
[docs] async def batch_embed_contents( self, request: Optional[ Union[generative_service.BatchEmbedContentsRequest, dict] ] = None, *, model: Optional[str] = None, requests: Optional[ MutableSequence[generative_service.EmbedContentRequest] ] = None, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: Union[float, object] = gapic_v1.method.DEFAULT, metadata: Sequence[Tuple[str, Union[str, bytes]]] = (), ) -> generative_service.BatchEmbedContentsResponse: r"""Generates multiple embedding vectors from the input ``Content`` which consists of a batch of strings represented as ``EmbedContentRequest`` objects. .. code-block:: python # This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.ai import generativelanguage_v1beta async def sample_batch_embed_contents(): # Create a client client = generativelanguage_v1beta.GenerativeServiceAsyncClient() # Initialize request argument(s) requests = generativelanguage_v1beta.EmbedContentRequest() requests.model = "model_value" request = generativelanguage_v1beta.BatchEmbedContentsRequest( model="model_value", requests=requests, ) # Make the request response = await client.batch_embed_contents(request=request) # Handle the response print(response) Args: request (Optional[Union[google.ai.generativelanguage_v1beta.types.BatchEmbedContentsRequest, dict]]): The request object. Batch request to get embeddings from the model for a list of prompts. model (:class:`str`): Required. The model's resource name. This serves as an ID for the Model to use. This name should match a model name returned by the ``ListModels`` method. Format: ``models/{model}`` This corresponds to the ``model`` field on the ``request`` instance; if ``request`` is provided, this should not be set. requests (:class:`MutableSequence[google.ai.generativelanguage_v1beta.types.EmbedContentRequest]`): Required. Embed requests for the batch. The model in each of these requests must match the model specified ``BatchEmbedContentsRequest.model``. This corresponds to the ``requests`` field on the ``request`` instance; if ``request`` is provided, this should not be set. retry (google.api_core.retry_async.AsyncRetry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, Union[str, bytes]]]): Key/value pairs which should be sent along with the request as metadata. Normally, each value must be of type `str`, but for metadata keys ending with the suffix `-bin`, the corresponding values must be of type `bytes`. Returns: google.ai.generativelanguage_v1beta.types.BatchEmbedContentsResponse: The response to a BatchEmbedContentsRequest. """ # Create or coerce a protobuf request object. # - Quick check: If we got a request object, we should *not* have # gotten any keyword arguments that map to the request. flattened_params = [model, requests] has_flattened_params = ( len([param for param in flattened_params if param is not None]) > 0 ) if request is not None and has_flattened_params: raise ValueError( "If the `request` argument is set, then none of " "the individual field arguments should be set." ) # - Use the request object if provided (there's no risk of modifying the input as # there are no flattened fields), or create one. if not isinstance(request, generative_service.BatchEmbedContentsRequest): request = generative_service.BatchEmbedContentsRequest(request) # If we have keyword arguments corresponding to fields on the # request, apply these. if model is not None: request.model = model if requests: request.requests.extend(requests) # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = self._client._transport._wrapped_methods[ self._client._transport.batch_embed_contents ] # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata((("model", request.model),)), ) # Validate the universe domain. self._client._validate_universe_domain() # Send the request. response = await rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # Done; return the response. return response
[docs] async def count_tokens( self, request: Optional[Union[generative_service.CountTokensRequest, dict]] = None, *, model: Optional[str] = None, contents: Optional[MutableSequence[content.Content]] = None, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: Union[float, object] = gapic_v1.method.DEFAULT, metadata: Sequence[Tuple[str, Union[str, bytes]]] = (), ) -> generative_service.CountTokensResponse: r"""Runs a model's tokenizer on input ``Content`` and returns the token count. Refer to the `tokens guide <https://ai.google.dev/gemini-api/docs/tokens>`__ to learn more about tokens. .. code-block:: python # This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.ai import generativelanguage_v1beta async def sample_count_tokens(): # Create a client client = generativelanguage_v1beta.GenerativeServiceAsyncClient() # Initialize request argument(s) request = generativelanguage_v1beta.CountTokensRequest( model="model_value", ) # Make the request response = await client.count_tokens(request=request) # Handle the response print(response) Args: request (Optional[Union[google.ai.generativelanguage_v1beta.types.CountTokensRequest, dict]]): The request object. Counts the number of tokens in the ``prompt`` sent to a model. Models may tokenize text differently, so each model may return a different ``token_count``. model (:class:`str`): Required. The model's resource name. This serves as an ID for the Model to use. This name should match a model name returned by the ``ListModels`` method. Format: ``models/{model}`` This corresponds to the ``model`` field on the ``request`` instance; if ``request`` is provided, this should not be set. contents (:class:`MutableSequence[google.ai.generativelanguage_v1beta.types.Content]`): Optional. The input given to the model as a prompt. This field is ignored when ``generate_content_request`` is set. This corresponds to the ``contents`` field on the ``request`` instance; if ``request`` is provided, this should not be set. retry (google.api_core.retry_async.AsyncRetry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, Union[str, bytes]]]): Key/value pairs which should be sent along with the request as metadata. Normally, each value must be of type `str`, but for metadata keys ending with the suffix `-bin`, the corresponding values must be of type `bytes`. Returns: google.ai.generativelanguage_v1beta.types.CountTokensResponse: A response from CountTokens. It returns the model's token_count for the prompt. """ # Create or coerce a protobuf request object. # - Quick check: If we got a request object, we should *not* have # gotten any keyword arguments that map to the request. flattened_params = [model, contents] has_flattened_params = ( len([param for param in flattened_params if param is not None]) > 0 ) if request is not None and has_flattened_params: raise ValueError( "If the `request` argument is set, then none of " "the individual field arguments should be set." ) # - Use the request object if provided (there's no risk of modifying the input as # there are no flattened fields), or create one. if not isinstance(request, generative_service.CountTokensRequest): request = generative_service.CountTokensRequest(request) # If we have keyword arguments corresponding to fields on the # request, apply these. if model is not None: request.model = model if contents: request.contents.extend(contents) # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = self._client._transport._wrapped_methods[ self._client._transport.count_tokens ] # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata((("model", request.model),)), ) # Validate the universe domain. self._client._validate_universe_domain() # Send the request. response = await rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # Done; return the response. return response
[docs] def bidi_generate_content( self, requests: Optional[ AsyncIterator[generative_service.BidiGenerateContentClientMessage] ] = None, *, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: Union[float, object] = gapic_v1.method.DEFAULT, metadata: Sequence[Tuple[str, Union[str, bytes]]] = (), ) -> Awaitable[AsyncIterable[generative_service.BidiGenerateContentServerMessage]]: r"""Low-Latency bidirectional streaming API that supports audio and video streaming inputs can produce multimodal output streams (audio and text). .. code-block:: python # This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.ai import generativelanguage_v1beta async def sample_bidi_generate_content(): # Create a client client = generativelanguage_v1beta.GenerativeServiceAsyncClient() # Initialize request argument(s) setup = generativelanguage_v1beta.BidiGenerateContentSetup() setup.model = "model_value" request = generativelanguage_v1beta.BidiGenerateContentClientMessage( setup=setup, ) # This method expects an iterator which contains # 'generativelanguage_v1beta.BidiGenerateContentClientMessage' objects # Here we create a generator that yields a single `request` for # demonstrative purposes. requests = [request] def request_generator(): for request in requests: yield request # Make the request stream = await client.bidi_generate_content(requests=request_generator()) # Handle the response async for response in stream: print(response) Args: requests (AsyncIterator[`google.ai.generativelanguage_v1beta.types.BidiGenerateContentClientMessage`]): The request object AsyncIterator. Messages sent by the client in the BidiGenerateContent call. retry (google.api_core.retry_async.AsyncRetry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, Union[str, bytes]]]): Key/value pairs which should be sent along with the request as metadata. Normally, each value must be of type `str`, but for metadata keys ending with the suffix `-bin`, the corresponding values must be of type `bytes`. Returns: AsyncIterable[google.ai.generativelanguage_v1beta.types.BidiGenerateContentServerMessage]: Response message for the BidiGenerateContent call. """ # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = self._client._transport._wrapped_methods[ self._client._transport.bidi_generate_content ] # Validate the universe domain. self._client._validate_universe_domain() # Send the request. response = rpc( requests, retry=retry, timeout=timeout, metadata=metadata, ) # Done; return the response. return response
[docs] async def list_operations( self, request: Optional[operations_pb2.ListOperationsRequest] = None, *, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: Union[float, object] = gapic_v1.method.DEFAULT, metadata: Sequence[Tuple[str, Union[str, bytes]]] = (), ) -> operations_pb2.ListOperationsResponse: r"""Lists operations that match the specified filter in the request. Args: request (:class:`~.operations_pb2.ListOperationsRequest`): The request object. Request message for `ListOperations` method. retry (google.api_core.retry_async.AsyncRetry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, Union[str, bytes]]]): Key/value pairs which should be sent along with the request as metadata. Normally, each value must be of type `str`, but for metadata keys ending with the suffix `-bin`, the corresponding values must be of type `bytes`. Returns: ~.operations_pb2.ListOperationsResponse: Response message for ``ListOperations`` method. """ # Create or coerce a protobuf request object. # The request isn't a proto-plus wrapped type, # so it must be constructed via keyword expansion. if isinstance(request, dict): request = operations_pb2.ListOperationsRequest(**request) # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = self.transport._wrapped_methods[self._client._transport.list_operations] # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata((("name", request.name),)), ) # Validate the universe domain. self._client._validate_universe_domain() # Send the request. response = await rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # Done; return the response. return response
[docs] async def get_operation( self, request: Optional[operations_pb2.GetOperationRequest] = None, *, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: Union[float, object] = gapic_v1.method.DEFAULT, metadata: Sequence[Tuple[str, Union[str, bytes]]] = (), ) -> operations_pb2.Operation: r"""Gets the latest state of a long-running operation. Args: request (:class:`~.operations_pb2.GetOperationRequest`): The request object. Request message for `GetOperation` method. retry (google.api_core.retry_async.AsyncRetry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, Union[str, bytes]]]): Key/value pairs which should be sent along with the request as metadata. Normally, each value must be of type `str`, but for metadata keys ending with the suffix `-bin`, the corresponding values must be of type `bytes`. Returns: ~.operations_pb2.Operation: An ``Operation`` object. """ # Create or coerce a protobuf request object. # The request isn't a proto-plus wrapped type, # so it must be constructed via keyword expansion. if isinstance(request, dict): request = operations_pb2.GetOperationRequest(**request) # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = self.transport._wrapped_methods[self._client._transport.get_operation] # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata((("name", request.name),)), ) # Validate the universe domain. self._client._validate_universe_domain() # Send the request. response = await rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # Done; return the response. return response
[docs] async def delete_operation( self, request: Optional[operations_pb2.DeleteOperationRequest] = None, *, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: Union[float, object] = gapic_v1.method.DEFAULT, metadata: Sequence[Tuple[str, Union[str, bytes]]] = (), ) -> None: r"""Deletes a long-running operation. This method indicates that the client is no longer interested in the operation result. It does not cancel the operation. If the server doesn't support this method, it returns `google.rpc.Code.UNIMPLEMENTED`. Args: request (:class:`~.operations_pb2.DeleteOperationRequest`): The request object. Request message for `DeleteOperation` method. retry (google.api_core.retry_async.AsyncRetry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, Union[str, bytes]]]): Key/value pairs which should be sent along with the request as metadata. Normally, each value must be of type `str`, but for metadata keys ending with the suffix `-bin`, the corresponding values must be of type `bytes`. Returns: None """ # Create or coerce a protobuf request object. # The request isn't a proto-plus wrapped type, # so it must be constructed via keyword expansion. if isinstance(request, dict): request = operations_pb2.DeleteOperationRequest(**request) # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = self.transport._wrapped_methods[self._client._transport.delete_operation] # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata((("name", request.name),)), ) # Validate the universe domain. self._client._validate_universe_domain() # Send the request. await rpc( request, retry=retry, timeout=timeout, metadata=metadata, )
[docs] async def cancel_operation( self, request: Optional[operations_pb2.CancelOperationRequest] = None, *, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: Union[float, object] = gapic_v1.method.DEFAULT, metadata: Sequence[Tuple[str, Union[str, bytes]]] = (), ) -> None: r"""Starts asynchronous cancellation on a long-running operation. The server makes a best effort to cancel the operation, but success is not guaranteed. If the server doesn't support this method, it returns `google.rpc.Code.UNIMPLEMENTED`. Args: request (:class:`~.operations_pb2.CancelOperationRequest`): The request object. Request message for `CancelOperation` method. retry (google.api_core.retry_async.AsyncRetry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, Union[str, bytes]]]): Key/value pairs which should be sent along with the request as metadata. Normally, each value must be of type `str`, but for metadata keys ending with the suffix `-bin`, the corresponding values must be of type `bytes`. Returns: None """ # Create or coerce a protobuf request object. # The request isn't a proto-plus wrapped type, # so it must be constructed via keyword expansion. if isinstance(request, dict): request = operations_pb2.CancelOperationRequest(**request) # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = self.transport._wrapped_methods[self._client._transport.cancel_operation] # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata((("name", request.name),)), ) # Validate the universe domain. self._client._validate_universe_domain() # Send the request. await rpc( request, retry=retry, timeout=timeout, metadata=metadata, )
async def __aenter__(self) -> "GenerativeServiceAsyncClient": return self async def __aexit__(self, exc_type, exc, tb): await self.transport.close()
DEFAULT_CLIENT_INFO = gapic_v1.client_info.ClientInfo( gapic_version=package_version.__version__ ) if hasattr(DEFAULT_CLIENT_INFO, "protobuf_runtime_version"): # pragma: NO COVER DEFAULT_CLIENT_INFO.protobuf_runtime_version = google.protobuf.__version__ __all__ = ("GenerativeServiceAsyncClient",)