As of January 1, 2020 this library no longer supports Python 2 on the latest released version. Library versions released prior to that date will continue to be available. For more information please visit Python 2 support on Google Cloud.

Source code for google.ai.generativelanguage_v1beta.services.text_service.async_client

# -*- coding: utf-8 -*-
# Copyright 2025 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from collections import OrderedDict
import logging as std_logging
import re
from typing import (
    Callable,
    Dict,
    Mapping,
    MutableMapping,
    MutableSequence,
    Optional,
    Sequence,
    Tuple,
    Type,
    Union,
)

from google.api_core import exceptions as core_exceptions
from google.api_core import gapic_v1
from google.api_core import retry_async as retries
from google.api_core.client_options import ClientOptions
from google.auth import credentials as ga_credentials  # type: ignore
from google.oauth2 import service_account  # type: ignore
import google.protobuf

from google.ai.generativelanguage_v1beta import gapic_version as package_version

try:
    OptionalRetry = Union[retries.AsyncRetry, gapic_v1.method._MethodDefault, None]
except AttributeError:  # pragma: NO COVER
    OptionalRetry = Union[retries.AsyncRetry, object, None]  # type: ignore

from google.longrunning import operations_pb2  # type: ignore

from google.ai.generativelanguage_v1beta.types import safety, text_service

from .client import TextServiceClient
from .transports.base import DEFAULT_CLIENT_INFO, TextServiceTransport
from .transports.grpc_asyncio import TextServiceGrpcAsyncIOTransport

try:
    from google.api_core import client_logging  # type: ignore

    CLIENT_LOGGING_SUPPORTED = True  # pragma: NO COVER
except ImportError:  # pragma: NO COVER
    CLIENT_LOGGING_SUPPORTED = False

_LOGGER = std_logging.getLogger(__name__)


[docs]class TextServiceAsyncClient: """API for using Generative Language Models (GLMs) trained to generate text. Also known as Large Language Models (LLM)s, these generate text given an input prompt from the user. """ _client: TextServiceClient # Copy defaults from the synchronous client for use here. # Note: DEFAULT_ENDPOINT is deprecated. Use _DEFAULT_ENDPOINT_TEMPLATE instead. DEFAULT_ENDPOINT = TextServiceClient.DEFAULT_ENDPOINT DEFAULT_MTLS_ENDPOINT = TextServiceClient.DEFAULT_MTLS_ENDPOINT _DEFAULT_ENDPOINT_TEMPLATE = TextServiceClient._DEFAULT_ENDPOINT_TEMPLATE _DEFAULT_UNIVERSE = TextServiceClient._DEFAULT_UNIVERSE model_path = staticmethod(TextServiceClient.model_path) parse_model_path = staticmethod(TextServiceClient.parse_model_path) common_billing_account_path = staticmethod( TextServiceClient.common_billing_account_path ) parse_common_billing_account_path = staticmethod( TextServiceClient.parse_common_billing_account_path ) common_folder_path = staticmethod(TextServiceClient.common_folder_path) parse_common_folder_path = staticmethod(TextServiceClient.parse_common_folder_path) common_organization_path = staticmethod(TextServiceClient.common_organization_path) parse_common_organization_path = staticmethod( TextServiceClient.parse_common_organization_path ) common_project_path = staticmethod(TextServiceClient.common_project_path) parse_common_project_path = staticmethod( TextServiceClient.parse_common_project_path ) common_location_path = staticmethod(TextServiceClient.common_location_path) parse_common_location_path = staticmethod( TextServiceClient.parse_common_location_path )
[docs] @classmethod def from_service_account_info(cls, info: dict, *args, **kwargs): """Creates an instance of this client using the provided credentials info. Args: info (dict): The service account private key info. args: Additional arguments to pass to the constructor. kwargs: Additional arguments to pass to the constructor. Returns: TextServiceAsyncClient: The constructed client. """ return TextServiceClient.from_service_account_info.__func__(TextServiceAsyncClient, info, *args, **kwargs) # type: ignore
[docs] @classmethod def from_service_account_file(cls, filename: str, *args, **kwargs): """Creates an instance of this client using the provided credentials file. Args: filename (str): The path to the service account private key json file. args: Additional arguments to pass to the constructor. kwargs: Additional arguments to pass to the constructor. Returns: TextServiceAsyncClient: The constructed client. """ return TextServiceClient.from_service_account_file.__func__(TextServiceAsyncClient, filename, *args, **kwargs) # type: ignore
from_service_account_json = from_service_account_file
[docs] @classmethod def get_mtls_endpoint_and_cert_source( cls, client_options: Optional[ClientOptions] = None ): """Return the API endpoint and client cert source for mutual TLS. The client cert source is determined in the following order: (1) if `GOOGLE_API_USE_CLIENT_CERTIFICATE` environment variable is not "true", the client cert source is None. (2) if `client_options.client_cert_source` is provided, use the provided one; if the default client cert source exists, use the default one; otherwise the client cert source is None. The API endpoint is determined in the following order: (1) if `client_options.api_endpoint` if provided, use the provided one. (2) if `GOOGLE_API_USE_CLIENT_CERTIFICATE` environment variable is "always", use the default mTLS endpoint; if the environment variable is "never", use the default API endpoint; otherwise if client cert source exists, use the default mTLS endpoint, otherwise use the default API endpoint. More details can be found at https://google.aip.dev/auth/4114. Args: client_options (google.api_core.client_options.ClientOptions): Custom options for the client. Only the `api_endpoint` and `client_cert_source` properties may be used in this method. Returns: Tuple[str, Callable[[], Tuple[bytes, bytes]]]: returns the API endpoint and the client cert source to use. Raises: google.auth.exceptions.MutualTLSChannelError: If any errors happen. """ return TextServiceClient.get_mtls_endpoint_and_cert_source(client_options) # type: ignore
@property def transport(self) -> TextServiceTransport: """Returns the transport used by the client instance. Returns: TextServiceTransport: The transport used by the client instance. """ return self._client.transport @property def api_endpoint(self): """Return the API endpoint used by the client instance. Returns: str: The API endpoint used by the client instance. """ return self._client._api_endpoint @property def universe_domain(self) -> str: """Return the universe domain used by the client instance. Returns: str: The universe domain used by the client instance. """ return self._client._universe_domain get_transport_class = TextServiceClient.get_transport_class def __init__( self, *, credentials: Optional[ga_credentials.Credentials] = None, transport: Optional[ Union[str, TextServiceTransport, Callable[..., TextServiceTransport]] ] = "grpc_asyncio", client_options: Optional[ClientOptions] = None, client_info: gapic_v1.client_info.ClientInfo = DEFAULT_CLIENT_INFO, ) -> None: """Instantiates the text service async client. Args: credentials (Optional[google.auth.credentials.Credentials]): The authorization credentials to attach to requests. These credentials identify the application to the service; if none are specified, the client will attempt to ascertain the credentials from the environment. transport (Optional[Union[str,TextServiceTransport,Callable[..., TextServiceTransport]]]): The transport to use, or a Callable that constructs and returns a new transport to use. If a Callable is given, it will be called with the same set of initialization arguments as used in the TextServiceTransport constructor. If set to None, a transport is chosen automatically. client_options (Optional[Union[google.api_core.client_options.ClientOptions, dict]]): Custom options for the client. 1. The ``api_endpoint`` property can be used to override the default endpoint provided by the client when ``transport`` is not explicitly provided. Only if this property is not set and ``transport`` was not explicitly provided, the endpoint is determined by the GOOGLE_API_USE_MTLS_ENDPOINT environment variable, which have one of the following values: "always" (always use the default mTLS endpoint), "never" (always use the default regular endpoint) and "auto" (auto-switch to the default mTLS endpoint if client certificate is present; this is the default value). 2. If the GOOGLE_API_USE_CLIENT_CERTIFICATE environment variable is "true", then the ``client_cert_source`` property can be used to provide a client certificate for mTLS transport. If not provided, the default SSL client certificate will be used if present. If GOOGLE_API_USE_CLIENT_CERTIFICATE is "false" or not set, no client certificate will be used. 3. The ``universe_domain`` property can be used to override the default "googleapis.com" universe. Note that ``api_endpoint`` property still takes precedence; and ``universe_domain`` is currently not supported for mTLS. client_info (google.api_core.gapic_v1.client_info.ClientInfo): The client info used to send a user-agent string along with API requests. If ``None``, then default info will be used. Generally, you only need to set this if you're developing your own client library. Raises: google.auth.exceptions.MutualTlsChannelError: If mutual TLS transport creation failed for any reason. """ self._client = TextServiceClient( credentials=credentials, transport=transport, client_options=client_options, client_info=client_info, ) if CLIENT_LOGGING_SUPPORTED and _LOGGER.isEnabledFor( std_logging.DEBUG ): # pragma: NO COVER _LOGGER.debug( "Created client `google.ai.generativelanguage_v1beta.TextServiceAsyncClient`.", extra={ "serviceName": "google.ai.generativelanguage.v1beta.TextService", "universeDomain": getattr( self._client._transport._credentials, "universe_domain", "" ), "credentialsType": f"{type(self._client._transport._credentials).__module__}.{type(self._client._transport._credentials).__qualname__}", "credentialsInfo": getattr( self.transport._credentials, "get_cred_info", lambda: None )(), } if hasattr(self._client._transport, "_credentials") else { "serviceName": "google.ai.generativelanguage.v1beta.TextService", "credentialsType": None, }, )
[docs] async def generate_text( self, request: Optional[Union[text_service.GenerateTextRequest, dict]] = None, *, model: Optional[str] = None, prompt: Optional[text_service.TextPrompt] = None, temperature: Optional[float] = None, candidate_count: Optional[int] = None, max_output_tokens: Optional[int] = None, top_p: Optional[float] = None, top_k: Optional[int] = None, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: Union[float, object] = gapic_v1.method.DEFAULT, metadata: Sequence[Tuple[str, Union[str, bytes]]] = (), ) -> text_service.GenerateTextResponse: r"""Generates a response from the model given an input message. .. code-block:: python # This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.ai import generativelanguage_v1beta async def sample_generate_text(): # Create a client client = generativelanguage_v1beta.TextServiceAsyncClient() # Initialize request argument(s) prompt = generativelanguage_v1beta.TextPrompt() prompt.text = "text_value" request = generativelanguage_v1beta.GenerateTextRequest( model="model_value", prompt=prompt, ) # Make the request response = await client.generate_text(request=request) # Handle the response print(response) Args: request (Optional[Union[google.ai.generativelanguage_v1beta.types.GenerateTextRequest, dict]]): The request object. Request to generate a text completion response from the model. model (:class:`str`): Required. The name of the ``Model`` or ``TunedModel`` to use for generating the completion. Examples: models/text-bison-001 tunedModels/sentence-translator-u3b7m This corresponds to the ``model`` field on the ``request`` instance; if ``request`` is provided, this should not be set. prompt (:class:`google.ai.generativelanguage_v1beta.types.TextPrompt`): Required. The free-form input text given to the model as a prompt. Given a prompt, the model will generate a TextCompletion response it predicts as the completion of the input text. This corresponds to the ``prompt`` field on the ``request`` instance; if ``request`` is provided, this should not be set. temperature (:class:`float`): Optional. Controls the randomness of the output. Note: The default value varies by model, see the ``Model.temperature`` attribute of the ``Model`` returned the ``getModel`` function. Values can range from [0.0,1.0], inclusive. A value closer to 1.0 will produce responses that are more varied and creative, while a value closer to 0.0 will typically result in more straightforward responses from the model. This corresponds to the ``temperature`` field on the ``request`` instance; if ``request`` is provided, this should not be set. candidate_count (:class:`int`): Optional. Number of generated responses to return. This value must be between [1, 8], inclusive. If unset, this will default to 1. This corresponds to the ``candidate_count`` field on the ``request`` instance; if ``request`` is provided, this should not be set. max_output_tokens (:class:`int`): Optional. The maximum number of tokens to include in a candidate. If unset, this will default to output_token_limit specified in the ``Model`` specification. This corresponds to the ``max_output_tokens`` field on the ``request`` instance; if ``request`` is provided, this should not be set. top_p (:class:`float`): Optional. The maximum cumulative probability of tokens to consider when sampling. The model uses combined Top-k and nucleus sampling. Tokens are sorted based on their assigned probabilities so that only the most likely tokens are considered. Top-k sampling directly limits the maximum number of tokens to consider, while Nucleus sampling limits number of tokens based on the cumulative probability. Note: The default value varies by model, see the ``Model.top_p`` attribute of the ``Model`` returned the ``getModel`` function. This corresponds to the ``top_p`` field on the ``request`` instance; if ``request`` is provided, this should not be set. top_k (:class:`int`): Optional. The maximum number of tokens to consider when sampling. The model uses combined Top-k and nucleus sampling. Top-k sampling considers the set of ``top_k`` most probable tokens. Defaults to 40. Note: The default value varies by model, see the ``Model.top_k`` attribute of the ``Model`` returned the ``getModel`` function. This corresponds to the ``top_k`` field on the ``request`` instance; if ``request`` is provided, this should not be set. retry (google.api_core.retry_async.AsyncRetry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, Union[str, bytes]]]): Key/value pairs which should be sent along with the request as metadata. Normally, each value must be of type `str`, but for metadata keys ending with the suffix `-bin`, the corresponding values must be of type `bytes`. Returns: google.ai.generativelanguage_v1beta.types.GenerateTextResponse: The response from the model, including candidate completions. """ # Create or coerce a protobuf request object. # - Quick check: If we got a request object, we should *not* have # gotten any keyword arguments that map to the request. flattened_params = [ model, prompt, temperature, candidate_count, max_output_tokens, top_p, top_k, ] has_flattened_params = ( len([param for param in flattened_params if param is not None]) > 0 ) if request is not None and has_flattened_params: raise ValueError( "If the `request` argument is set, then none of " "the individual field arguments should be set." ) # - Use the request object if provided (there's no risk of modifying the input as # there are no flattened fields), or create one. if not isinstance(request, text_service.GenerateTextRequest): request = text_service.GenerateTextRequest(request) # If we have keyword arguments corresponding to fields on the # request, apply these. if model is not None: request.model = model if prompt is not None: request.prompt = prompt if temperature is not None: request.temperature = temperature if candidate_count is not None: request.candidate_count = candidate_count if max_output_tokens is not None: request.max_output_tokens = max_output_tokens if top_p is not None: request.top_p = top_p if top_k is not None: request.top_k = top_k # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = self._client._transport._wrapped_methods[ self._client._transport.generate_text ] # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata((("model", request.model),)), ) # Validate the universe domain. self._client._validate_universe_domain() # Send the request. response = await rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # Done; return the response. return response
[docs] async def embed_text( self, request: Optional[Union[text_service.EmbedTextRequest, dict]] = None, *, model: Optional[str] = None, text: Optional[str] = None, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: Union[float, object] = gapic_v1.method.DEFAULT, metadata: Sequence[Tuple[str, Union[str, bytes]]] = (), ) -> text_service.EmbedTextResponse: r"""Generates an embedding from the model given an input message. .. code-block:: python # This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.ai import generativelanguage_v1beta async def sample_embed_text(): # Create a client client = generativelanguage_v1beta.TextServiceAsyncClient() # Initialize request argument(s) request = generativelanguage_v1beta.EmbedTextRequest( model="model_value", ) # Make the request response = await client.embed_text(request=request) # Handle the response print(response) Args: request (Optional[Union[google.ai.generativelanguage_v1beta.types.EmbedTextRequest, dict]]): The request object. Request to get a text embedding from the model. model (:class:`str`): Required. The model name to use with the format model=models/{model}. This corresponds to the ``model`` field on the ``request`` instance; if ``request`` is provided, this should not be set. text (:class:`str`): Optional. The free-form input text that the model will turn into an embedding. This corresponds to the ``text`` field on the ``request`` instance; if ``request`` is provided, this should not be set. retry (google.api_core.retry_async.AsyncRetry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, Union[str, bytes]]]): Key/value pairs which should be sent along with the request as metadata. Normally, each value must be of type `str`, but for metadata keys ending with the suffix `-bin`, the corresponding values must be of type `bytes`. Returns: google.ai.generativelanguage_v1beta.types.EmbedTextResponse: The response to a EmbedTextRequest. """ # Create or coerce a protobuf request object. # - Quick check: If we got a request object, we should *not* have # gotten any keyword arguments that map to the request. flattened_params = [model, text] has_flattened_params = ( len([param for param in flattened_params if param is not None]) > 0 ) if request is not None and has_flattened_params: raise ValueError( "If the `request` argument is set, then none of " "the individual field arguments should be set." ) # - Use the request object if provided (there's no risk of modifying the input as # there are no flattened fields), or create one. if not isinstance(request, text_service.EmbedTextRequest): request = text_service.EmbedTextRequest(request) # If we have keyword arguments corresponding to fields on the # request, apply these. if model is not None: request.model = model if text is not None: request.text = text # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = self._client._transport._wrapped_methods[ self._client._transport.embed_text ] # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata((("model", request.model),)), ) # Validate the universe domain. self._client._validate_universe_domain() # Send the request. response = await rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # Done; return the response. return response
[docs] async def batch_embed_text( self, request: Optional[Union[text_service.BatchEmbedTextRequest, dict]] = None, *, model: Optional[str] = None, texts: Optional[MutableSequence[str]] = None, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: Union[float, object] = gapic_v1.method.DEFAULT, metadata: Sequence[Tuple[str, Union[str, bytes]]] = (), ) -> text_service.BatchEmbedTextResponse: r"""Generates multiple embeddings from the model given input text in a synchronous call. .. code-block:: python # This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.ai import generativelanguage_v1beta async def sample_batch_embed_text(): # Create a client client = generativelanguage_v1beta.TextServiceAsyncClient() # Initialize request argument(s) request = generativelanguage_v1beta.BatchEmbedTextRequest( model="model_value", ) # Make the request response = await client.batch_embed_text(request=request) # Handle the response print(response) Args: request (Optional[Union[google.ai.generativelanguage_v1beta.types.BatchEmbedTextRequest, dict]]): The request object. Batch request to get a text embedding from the model. model (:class:`str`): Required. The name of the ``Model`` to use for generating the embedding. Examples: models/embedding-gecko-001 This corresponds to the ``model`` field on the ``request`` instance; if ``request`` is provided, this should not be set. texts (:class:`MutableSequence[str]`): Optional. The free-form input texts that the model will turn into an embedding. The current limit is 100 texts, over which an error will be thrown. This corresponds to the ``texts`` field on the ``request`` instance; if ``request`` is provided, this should not be set. retry (google.api_core.retry_async.AsyncRetry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, Union[str, bytes]]]): Key/value pairs which should be sent along with the request as metadata. Normally, each value must be of type `str`, but for metadata keys ending with the suffix `-bin`, the corresponding values must be of type `bytes`. Returns: google.ai.generativelanguage_v1beta.types.BatchEmbedTextResponse: The response to a EmbedTextRequest. """ # Create or coerce a protobuf request object. # - Quick check: If we got a request object, we should *not* have # gotten any keyword arguments that map to the request. flattened_params = [model, texts] has_flattened_params = ( len([param for param in flattened_params if param is not None]) > 0 ) if request is not None and has_flattened_params: raise ValueError( "If the `request` argument is set, then none of " "the individual field arguments should be set." ) # - Use the request object if provided (there's no risk of modifying the input as # there are no flattened fields), or create one. if not isinstance(request, text_service.BatchEmbedTextRequest): request = text_service.BatchEmbedTextRequest(request) # If we have keyword arguments corresponding to fields on the # request, apply these. if model is not None: request.model = model if texts: request.texts.extend(texts) # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = self._client._transport._wrapped_methods[ self._client._transport.batch_embed_text ] # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata((("model", request.model),)), ) # Validate the universe domain. self._client._validate_universe_domain() # Send the request. response = await rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # Done; return the response. return response
[docs] async def count_text_tokens( self, request: Optional[Union[text_service.CountTextTokensRequest, dict]] = None, *, model: Optional[str] = None, prompt: Optional[text_service.TextPrompt] = None, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: Union[float, object] = gapic_v1.method.DEFAULT, metadata: Sequence[Tuple[str, Union[str, bytes]]] = (), ) -> text_service.CountTextTokensResponse: r"""Runs a model's tokenizer on a text and returns the token count. .. code-block:: python # This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.ai import generativelanguage_v1beta async def sample_count_text_tokens(): # Create a client client = generativelanguage_v1beta.TextServiceAsyncClient() # Initialize request argument(s) prompt = generativelanguage_v1beta.TextPrompt() prompt.text = "text_value" request = generativelanguage_v1beta.CountTextTokensRequest( model="model_value", prompt=prompt, ) # Make the request response = await client.count_text_tokens(request=request) # Handle the response print(response) Args: request (Optional[Union[google.ai.generativelanguage_v1beta.types.CountTextTokensRequest, dict]]): The request object. Counts the number of tokens in the ``prompt`` sent to a model. Models may tokenize text differently, so each model may return a different ``token_count``. model (:class:`str`): Required. The model's resource name. This serves as an ID for the Model to use. This name should match a model name returned by the ``ListModels`` method. Format: ``models/{model}`` This corresponds to the ``model`` field on the ``request`` instance; if ``request`` is provided, this should not be set. prompt (:class:`google.ai.generativelanguage_v1beta.types.TextPrompt`): Required. The free-form input text given to the model as a prompt. This corresponds to the ``prompt`` field on the ``request`` instance; if ``request`` is provided, this should not be set. retry (google.api_core.retry_async.AsyncRetry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, Union[str, bytes]]]): Key/value pairs which should be sent along with the request as metadata. Normally, each value must be of type `str`, but for metadata keys ending with the suffix `-bin`, the corresponding values must be of type `bytes`. Returns: google.ai.generativelanguage_v1beta.types.CountTextTokensResponse: A response from CountTextTokens. It returns the model's token_count for the prompt. """ # Create or coerce a protobuf request object. # - Quick check: If we got a request object, we should *not* have # gotten any keyword arguments that map to the request. flattened_params = [model, prompt] has_flattened_params = ( len([param for param in flattened_params if param is not None]) > 0 ) if request is not None and has_flattened_params: raise ValueError( "If the `request` argument is set, then none of " "the individual field arguments should be set." ) # - Use the request object if provided (there's no risk of modifying the input as # there are no flattened fields), or create one. if not isinstance(request, text_service.CountTextTokensRequest): request = text_service.CountTextTokensRequest(request) # If we have keyword arguments corresponding to fields on the # request, apply these. if model is not None: request.model = model if prompt is not None: request.prompt = prompt # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = self._client._transport._wrapped_methods[ self._client._transport.count_text_tokens ] # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata((("model", request.model),)), ) # Validate the universe domain. self._client._validate_universe_domain() # Send the request. response = await rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # Done; return the response. return response
[docs] async def list_operations( self, request: Optional[operations_pb2.ListOperationsRequest] = None, *, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: Union[float, object] = gapic_v1.method.DEFAULT, metadata: Sequence[Tuple[str, Union[str, bytes]]] = (), ) -> operations_pb2.ListOperationsResponse: r"""Lists operations that match the specified filter in the request. Args: request (:class:`~.operations_pb2.ListOperationsRequest`): The request object. Request message for `ListOperations` method. retry (google.api_core.retry_async.AsyncRetry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, Union[str, bytes]]]): Key/value pairs which should be sent along with the request as metadata. Normally, each value must be of type `str`, but for metadata keys ending with the suffix `-bin`, the corresponding values must be of type `bytes`. Returns: ~.operations_pb2.ListOperationsResponse: Response message for ``ListOperations`` method. """ # Create or coerce a protobuf request object. # The request isn't a proto-plus wrapped type, # so it must be constructed via keyword expansion. if isinstance(request, dict): request = operations_pb2.ListOperationsRequest(**request) # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = self.transport._wrapped_methods[self._client._transport.list_operations] # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata((("name", request.name),)), ) # Validate the universe domain. self._client._validate_universe_domain() # Send the request. response = await rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # Done; return the response. return response
[docs] async def get_operation( self, request: Optional[operations_pb2.GetOperationRequest] = None, *, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: Union[float, object] = gapic_v1.method.DEFAULT, metadata: Sequence[Tuple[str, Union[str, bytes]]] = (), ) -> operations_pb2.Operation: r"""Gets the latest state of a long-running operation. Args: request (:class:`~.operations_pb2.GetOperationRequest`): The request object. Request message for `GetOperation` method. retry (google.api_core.retry_async.AsyncRetry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, Union[str, bytes]]]): Key/value pairs which should be sent along with the request as metadata. Normally, each value must be of type `str`, but for metadata keys ending with the suffix `-bin`, the corresponding values must be of type `bytes`. Returns: ~.operations_pb2.Operation: An ``Operation`` object. """ # Create or coerce a protobuf request object. # The request isn't a proto-plus wrapped type, # so it must be constructed via keyword expansion. if isinstance(request, dict): request = operations_pb2.GetOperationRequest(**request) # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = self.transport._wrapped_methods[self._client._transport.get_operation] # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata((("name", request.name),)), ) # Validate the universe domain. self._client._validate_universe_domain() # Send the request. response = await rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # Done; return the response. return response
[docs] async def delete_operation( self, request: Optional[operations_pb2.DeleteOperationRequest] = None, *, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: Union[float, object] = gapic_v1.method.DEFAULT, metadata: Sequence[Tuple[str, Union[str, bytes]]] = (), ) -> None: r"""Deletes a long-running operation. This method indicates that the client is no longer interested in the operation result. It does not cancel the operation. If the server doesn't support this method, it returns `google.rpc.Code.UNIMPLEMENTED`. Args: request (:class:`~.operations_pb2.DeleteOperationRequest`): The request object. Request message for `DeleteOperation` method. retry (google.api_core.retry_async.AsyncRetry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, Union[str, bytes]]]): Key/value pairs which should be sent along with the request as metadata. Normally, each value must be of type `str`, but for metadata keys ending with the suffix `-bin`, the corresponding values must be of type `bytes`. Returns: None """ # Create or coerce a protobuf request object. # The request isn't a proto-plus wrapped type, # so it must be constructed via keyword expansion. if isinstance(request, dict): request = operations_pb2.DeleteOperationRequest(**request) # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = self.transport._wrapped_methods[self._client._transport.delete_operation] # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata((("name", request.name),)), ) # Validate the universe domain. self._client._validate_universe_domain() # Send the request. await rpc( request, retry=retry, timeout=timeout, metadata=metadata, )
[docs] async def cancel_operation( self, request: Optional[operations_pb2.CancelOperationRequest] = None, *, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: Union[float, object] = gapic_v1.method.DEFAULT, metadata: Sequence[Tuple[str, Union[str, bytes]]] = (), ) -> None: r"""Starts asynchronous cancellation on a long-running operation. The server makes a best effort to cancel the operation, but success is not guaranteed. If the server doesn't support this method, it returns `google.rpc.Code.UNIMPLEMENTED`. Args: request (:class:`~.operations_pb2.CancelOperationRequest`): The request object. Request message for `CancelOperation` method. retry (google.api_core.retry_async.AsyncRetry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, Union[str, bytes]]]): Key/value pairs which should be sent along with the request as metadata. Normally, each value must be of type `str`, but for metadata keys ending with the suffix `-bin`, the corresponding values must be of type `bytes`. Returns: None """ # Create or coerce a protobuf request object. # The request isn't a proto-plus wrapped type, # so it must be constructed via keyword expansion. if isinstance(request, dict): request = operations_pb2.CancelOperationRequest(**request) # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = self.transport._wrapped_methods[self._client._transport.cancel_operation] # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata((("name", request.name),)), ) # Validate the universe domain. self._client._validate_universe_domain() # Send the request. await rpc( request, retry=retry, timeout=timeout, metadata=metadata, )
async def __aenter__(self) -> "TextServiceAsyncClient": return self async def __aexit__(self, exc_type, exc, tb): await self.transport.close()
DEFAULT_CLIENT_INFO = gapic_v1.client_info.ClientInfo( gapic_version=package_version.__version__ ) if hasattr(DEFAULT_CLIENT_INFO, "protobuf_runtime_version"): # pragma: NO COVER DEFAULT_CLIENT_INFO.protobuf_runtime_version = google.protobuf.__version__ __all__ = ("TextServiceAsyncClient",)