As of January 1, 2020 this library no longer supports Python 2 on the latest released version. Library versions released prior to that date will continue to be available. For more information please visit Python 2 support on Google Cloud.

Source code for google.ai.generativelanguage_v1beta2.services.discuss_service.async_client

# -*- coding: utf-8 -*-
# Copyright 2024 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from collections import OrderedDict
import re
from typing import (
    Callable,
    Dict,
    Mapping,
    MutableMapping,
    MutableSequence,
    Optional,
    Sequence,
    Tuple,
    Type,
    Union,
)

from google.api_core import exceptions as core_exceptions
from google.api_core import gapic_v1
from google.api_core import retry_async as retries
from google.api_core.client_options import ClientOptions
from google.auth import credentials as ga_credentials  # type: ignore
from google.oauth2 import service_account  # type: ignore

from google.ai.generativelanguage_v1beta2 import gapic_version as package_version

try:
    OptionalRetry = Union[retries.AsyncRetry, gapic_v1.method._MethodDefault, None]
except AttributeError:  # pragma: NO COVER
    OptionalRetry = Union[retries.AsyncRetry, object, None]  # type: ignore

from google.ai.generativelanguage_v1beta2.types import discuss_service, safety

from .client import DiscussServiceClient
from .transports.base import DEFAULT_CLIENT_INFO, DiscussServiceTransport
from .transports.grpc_asyncio import DiscussServiceGrpcAsyncIOTransport


[docs]class DiscussServiceAsyncClient: """An API for using Generative Language Models (GLMs) in dialog applications. Also known as large language models (LLMs), this API provides models that are trained for multi-turn dialog. """ _client: DiscussServiceClient # Copy defaults from the synchronous client for use here. # Note: DEFAULT_ENDPOINT is deprecated. Use _DEFAULT_ENDPOINT_TEMPLATE instead. DEFAULT_ENDPOINT = DiscussServiceClient.DEFAULT_ENDPOINT DEFAULT_MTLS_ENDPOINT = DiscussServiceClient.DEFAULT_MTLS_ENDPOINT _DEFAULT_ENDPOINT_TEMPLATE = DiscussServiceClient._DEFAULT_ENDPOINT_TEMPLATE _DEFAULT_UNIVERSE = DiscussServiceClient._DEFAULT_UNIVERSE model_path = staticmethod(DiscussServiceClient.model_path) parse_model_path = staticmethod(DiscussServiceClient.parse_model_path) common_billing_account_path = staticmethod( DiscussServiceClient.common_billing_account_path ) parse_common_billing_account_path = staticmethod( DiscussServiceClient.parse_common_billing_account_path ) common_folder_path = staticmethod(DiscussServiceClient.common_folder_path) parse_common_folder_path = staticmethod( DiscussServiceClient.parse_common_folder_path ) common_organization_path = staticmethod( DiscussServiceClient.common_organization_path ) parse_common_organization_path = staticmethod( DiscussServiceClient.parse_common_organization_path ) common_project_path = staticmethod(DiscussServiceClient.common_project_path) parse_common_project_path = staticmethod( DiscussServiceClient.parse_common_project_path ) common_location_path = staticmethod(DiscussServiceClient.common_location_path) parse_common_location_path = staticmethod( DiscussServiceClient.parse_common_location_path )
[docs] @classmethod def from_service_account_info(cls, info: dict, *args, **kwargs): """Creates an instance of this client using the provided credentials info. Args: info (dict): The service account private key info. args: Additional arguments to pass to the constructor. kwargs: Additional arguments to pass to the constructor. Returns: DiscussServiceAsyncClient: The constructed client. """ return DiscussServiceClient.from_service_account_info.__func__(DiscussServiceAsyncClient, info, *args, **kwargs) # type: ignore
[docs] @classmethod def from_service_account_file(cls, filename: str, *args, **kwargs): """Creates an instance of this client using the provided credentials file. Args: filename (str): The path to the service account private key json file. args: Additional arguments to pass to the constructor. kwargs: Additional arguments to pass to the constructor. Returns: DiscussServiceAsyncClient: The constructed client. """ return DiscussServiceClient.from_service_account_file.__func__(DiscussServiceAsyncClient, filename, *args, **kwargs) # type: ignore
from_service_account_json = from_service_account_file
[docs] @classmethod def get_mtls_endpoint_and_cert_source( cls, client_options: Optional[ClientOptions] = None ): """Return the API endpoint and client cert source for mutual TLS. The client cert source is determined in the following order: (1) if `GOOGLE_API_USE_CLIENT_CERTIFICATE` environment variable is not "true", the client cert source is None. (2) if `client_options.client_cert_source` is provided, use the provided one; if the default client cert source exists, use the default one; otherwise the client cert source is None. The API endpoint is determined in the following order: (1) if `client_options.api_endpoint` if provided, use the provided one. (2) if `GOOGLE_API_USE_CLIENT_CERTIFICATE` environment variable is "always", use the default mTLS endpoint; if the environment variable is "never", use the default API endpoint; otherwise if client cert source exists, use the default mTLS endpoint, otherwise use the default API endpoint. More details can be found at https://google.aip.dev/auth/4114. Args: client_options (google.api_core.client_options.ClientOptions): Custom options for the client. Only the `api_endpoint` and `client_cert_source` properties may be used in this method. Returns: Tuple[str, Callable[[], Tuple[bytes, bytes]]]: returns the API endpoint and the client cert source to use. Raises: google.auth.exceptions.MutualTLSChannelError: If any errors happen. """ return DiscussServiceClient.get_mtls_endpoint_and_cert_source(client_options) # type: ignore
@property def transport(self) -> DiscussServiceTransport: """Returns the transport used by the client instance. Returns: DiscussServiceTransport: The transport used by the client instance. """ return self._client.transport @property def api_endpoint(self): """Return the API endpoint used by the client instance. Returns: str: The API endpoint used by the client instance. """ return self._client._api_endpoint @property def universe_domain(self) -> str: """Return the universe domain used by the client instance. Returns: str: The universe domain used by the client instance. """ return self._client._universe_domain get_transport_class = DiscussServiceClient.get_transport_class def __init__( self, *, credentials: Optional[ga_credentials.Credentials] = None, transport: Optional[ Union[str, DiscussServiceTransport, Callable[..., DiscussServiceTransport]] ] = "grpc_asyncio", client_options: Optional[ClientOptions] = None, client_info: gapic_v1.client_info.ClientInfo = DEFAULT_CLIENT_INFO, ) -> None: """Instantiates the discuss service async client. Args: credentials (Optional[google.auth.credentials.Credentials]): The authorization credentials to attach to requests. These credentials identify the application to the service; if none are specified, the client will attempt to ascertain the credentials from the environment. transport (Optional[Union[str,DiscussServiceTransport,Callable[..., DiscussServiceTransport]]]): The transport to use, or a Callable that constructs and returns a new transport to use. If a Callable is given, it will be called with the same set of initialization arguments as used in the DiscussServiceTransport constructor. If set to None, a transport is chosen automatically. client_options (Optional[Union[google.api_core.client_options.ClientOptions, dict]]): Custom options for the client. 1. The ``api_endpoint`` property can be used to override the default endpoint provided by the client when ``transport`` is not explicitly provided. Only if this property is not set and ``transport`` was not explicitly provided, the endpoint is determined by the GOOGLE_API_USE_MTLS_ENDPOINT environment variable, which have one of the following values: "always" (always use the default mTLS endpoint), "never" (always use the default regular endpoint) and "auto" (auto-switch to the default mTLS endpoint if client certificate is present; this is the default value). 2. If the GOOGLE_API_USE_CLIENT_CERTIFICATE environment variable is "true", then the ``client_cert_source`` property can be used to provide a client certificate for mTLS transport. If not provided, the default SSL client certificate will be used if present. If GOOGLE_API_USE_CLIENT_CERTIFICATE is "false" or not set, no client certificate will be used. 3. The ``universe_domain`` property can be used to override the default "googleapis.com" universe. Note that ``api_endpoint`` property still takes precedence; and ``universe_domain`` is currently not supported for mTLS. client_info (google.api_core.gapic_v1.client_info.ClientInfo): The client info used to send a user-agent string along with API requests. If ``None``, then default info will be used. Generally, you only need to set this if you're developing your own client library. Raises: google.auth.exceptions.MutualTlsChannelError: If mutual TLS transport creation failed for any reason. """ self._client = DiscussServiceClient( credentials=credentials, transport=transport, client_options=client_options, client_info=client_info, )
[docs] async def generate_message( self, request: Optional[Union[discuss_service.GenerateMessageRequest, dict]] = None, *, model: Optional[str] = None, prompt: Optional[discuss_service.MessagePrompt] = None, temperature: Optional[float] = None, candidate_count: Optional[int] = None, top_p: Optional[float] = None, top_k: Optional[int] = None, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: Union[float, object] = gapic_v1.method.DEFAULT, metadata: Sequence[Tuple[str, str]] = (), ) -> discuss_service.GenerateMessageResponse: r"""Generates a response from the model given an input ``MessagePrompt``. .. code-block:: python # This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.ai import generativelanguage_v1beta2 async def sample_generate_message(): # Create a client client = generativelanguage_v1beta2.DiscussServiceAsyncClient() # Initialize request argument(s) prompt = generativelanguage_v1beta2.MessagePrompt() prompt.messages.content = "content_value" request = generativelanguage_v1beta2.GenerateMessageRequest( model="model_value", prompt=prompt, ) # Make the request response = await client.generate_message(request=request) # Handle the response print(response) Args: request (Optional[Union[google.ai.generativelanguage_v1beta2.types.GenerateMessageRequest, dict]]): The request object. Request to generate a message response from the model. model (:class:`str`): Required. The name of the model to use. Format: ``name=models/{model}``. This corresponds to the ``model`` field on the ``request`` instance; if ``request`` is provided, this should not be set. prompt (:class:`google.ai.generativelanguage_v1beta2.types.MessagePrompt`): Required. The structured textual input given to the model as a prompt. Given a prompt, the model will return what it predicts is the next message in the discussion. This corresponds to the ``prompt`` field on the ``request`` instance; if ``request`` is provided, this should not be set. temperature (:class:`float`): Optional. Controls the randomness of the output. Values can range over ``[0.0,1.0]``, inclusive. A value closer to ``1.0`` will produce responses that are more varied, while a value closer to ``0.0`` will typically result in less surprising responses from the model. This corresponds to the ``temperature`` field on the ``request`` instance; if ``request`` is provided, this should not be set. candidate_count (:class:`int`): Optional. The number of generated response messages to return. This value must be between ``[1, 8]``, inclusive. If unset, this will default to ``1``. This corresponds to the ``candidate_count`` field on the ``request`` instance; if ``request`` is provided, this should not be set. top_p (:class:`float`): Optional. The maximum cumulative probability of tokens to consider when sampling. The model uses combined Top-k and nucleus sampling. Nucleus sampling considers the smallest set of tokens whose probability sum is at least ``top_p``. This corresponds to the ``top_p`` field on the ``request`` instance; if ``request`` is provided, this should not be set. top_k (:class:`int`): Optional. The maximum number of tokens to consider when sampling. The model uses combined Top-k and nucleus sampling. Top-k sampling considers the set of ``top_k`` most probable tokens. This corresponds to the ``top_k`` field on the ``request`` instance; if ``request`` is provided, this should not be set. retry (google.api_core.retry_async.AsyncRetry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. Returns: google.ai.generativelanguage_v1beta2.types.GenerateMessageResponse: The response from the model. This includes candidate messages and conversation history in the form of chronologically-ordered messages. """ # Create or coerce a protobuf request object. # - Quick check: If we got a request object, we should *not* have # gotten any keyword arguments that map to the request. has_flattened_params = any( [model, prompt, temperature, candidate_count, top_p, top_k] ) if request is not None and has_flattened_params: raise ValueError( "If the `request` argument is set, then none of " "the individual field arguments should be set." ) # - Use the request object if provided (there's no risk of modifying the input as # there are no flattened fields), or create one. if not isinstance(request, discuss_service.GenerateMessageRequest): request = discuss_service.GenerateMessageRequest(request) # If we have keyword arguments corresponding to fields on the # request, apply these. if model is not None: request.model = model if prompt is not None: request.prompt = prompt if temperature is not None: request.temperature = temperature if candidate_count is not None: request.candidate_count = candidate_count if top_p is not None: request.top_p = top_p if top_k is not None: request.top_k = top_k # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = self._client._transport._wrapped_methods[ self._client._transport.generate_message ] # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata((("model", request.model),)), ) # Validate the universe domain. self._client._validate_universe_domain() # Send the request. response = await rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # Done; return the response. return response
[docs] async def count_message_tokens( self, request: Optional[ Union[discuss_service.CountMessageTokensRequest, dict] ] = None, *, model: Optional[str] = None, prompt: Optional[discuss_service.MessagePrompt] = None, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: Union[float, object] = gapic_v1.method.DEFAULT, metadata: Sequence[Tuple[str, str]] = (), ) -> discuss_service.CountMessageTokensResponse: r"""Runs a model's tokenizer on a string and returns the token count. .. code-block:: python # This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.ai import generativelanguage_v1beta2 async def sample_count_message_tokens(): # Create a client client = generativelanguage_v1beta2.DiscussServiceAsyncClient() # Initialize request argument(s) prompt = generativelanguage_v1beta2.MessagePrompt() prompt.messages.content = "content_value" request = generativelanguage_v1beta2.CountMessageTokensRequest( model="model_value", prompt=prompt, ) # Make the request response = await client.count_message_tokens(request=request) # Handle the response print(response) Args: request (Optional[Union[google.ai.generativelanguage_v1beta2.types.CountMessageTokensRequest, dict]]): The request object. Counts the number of tokens in the ``prompt`` sent to a model. Models may tokenize text differently, so each model may return a different ``token_count``. model (:class:`str`): Required. The model's resource name. This serves as an ID for the Model to use. This name should match a model name returned by the ``ListModels`` method. Format: ``models/{model}`` This corresponds to the ``model`` field on the ``request`` instance; if ``request`` is provided, this should not be set. prompt (:class:`google.ai.generativelanguage_v1beta2.types.MessagePrompt`): Required. The prompt, whose token count is to be returned. This corresponds to the ``prompt`` field on the ``request`` instance; if ``request`` is provided, this should not be set. retry (google.api_core.retry_async.AsyncRetry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. Returns: google.ai.generativelanguage_v1beta2.types.CountMessageTokensResponse: A response from CountMessageTokens. It returns the model's token_count for the prompt. """ # Create or coerce a protobuf request object. # - Quick check: If we got a request object, we should *not* have # gotten any keyword arguments that map to the request. has_flattened_params = any([model, prompt]) if request is not None and has_flattened_params: raise ValueError( "If the `request` argument is set, then none of " "the individual field arguments should be set." ) # - Use the request object if provided (there's no risk of modifying the input as # there are no flattened fields), or create one. if not isinstance(request, discuss_service.CountMessageTokensRequest): request = discuss_service.CountMessageTokensRequest(request) # If we have keyword arguments corresponding to fields on the # request, apply these. if model is not None: request.model = model if prompt is not None: request.prompt = prompt # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = self._client._transport._wrapped_methods[ self._client._transport.count_message_tokens ] # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata((("model", request.model),)), ) # Validate the universe domain. self._client._validate_universe_domain() # Send the request. response = await rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # Done; return the response. return response
async def __aenter__(self) -> "DiscussServiceAsyncClient": return self async def __aexit__(self, exc_type, exc, tb): await self.transport.close()
DEFAULT_CLIENT_INFO = gapic_v1.client_info.ClientInfo( gapic_version=package_version.__version__ ) __all__ = ("DiscussServiceAsyncClient",)