As of January 1, 2020 this library no longer supports Python 2 on the latest released version. Library versions released prior to that date will continue to be available. For more information please visit Python 2 support on Google Cloud.

Source code for google.cloud.retail_v2.services.model_service.async_client

# -*- coding: utf-8 -*-
# Copyright 2024 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from collections import OrderedDict
import re
from typing import (
    Callable,
    Dict,
    Mapping,
    MutableMapping,
    MutableSequence,
    Optional,
    Sequence,
    Tuple,
    Type,
    Union,
)

from google.api_core import exceptions as core_exceptions
from google.api_core import gapic_v1
from google.api_core import retry_async as retries
from google.api_core.client_options import ClientOptions
from google.auth import credentials as ga_credentials  # type: ignore
from google.oauth2 import service_account  # type: ignore

from google.cloud.retail_v2 import gapic_version as package_version

try:
    OptionalRetry = Union[retries.AsyncRetry, gapic_v1.method._MethodDefault, None]
except AttributeError:  # pragma: NO COVER
    OptionalRetry = Union[retries.AsyncRetry, object, None]  # type: ignore

from google.api_core import operation  # type: ignore
from google.api_core import operation_async  # type: ignore
from google.cloud.location import locations_pb2  # type: ignore
from google.longrunning import operations_pb2  # type: ignore
from google.protobuf import field_mask_pb2  # type: ignore
from google.protobuf import timestamp_pb2  # type: ignore

from google.cloud.retail_v2.services.model_service import pagers
from google.cloud.retail_v2.types import common
from google.cloud.retail_v2.types import model
from google.cloud.retail_v2.types import model as gcr_model
from google.cloud.retail_v2.types import model_service

from .client import ModelServiceClient
from .transports.base import DEFAULT_CLIENT_INFO, ModelServiceTransport
from .transports.grpc_asyncio import ModelServiceGrpcAsyncIOTransport


[docs]class ModelServiceAsyncClient: """Service for performing CRUD operations on models. Recommendation models contain all the metadata necessary to generate a set of models for the ``Predict()`` API. A model is queried indirectly via a ServingConfig, which associates a model with a given Placement (e.g. Frequently Bought Together on Home Page). This service allows you to do the following: - Initiate training of a model. - Pause training of an existing model. - List all the available models along with their metadata. - Control their tuning schedule. """ _client: ModelServiceClient # Copy defaults from the synchronous client for use here. # Note: DEFAULT_ENDPOINT is deprecated. Use _DEFAULT_ENDPOINT_TEMPLATE instead. DEFAULT_ENDPOINT = ModelServiceClient.DEFAULT_ENDPOINT DEFAULT_MTLS_ENDPOINT = ModelServiceClient.DEFAULT_MTLS_ENDPOINT _DEFAULT_ENDPOINT_TEMPLATE = ModelServiceClient._DEFAULT_ENDPOINT_TEMPLATE _DEFAULT_UNIVERSE = ModelServiceClient._DEFAULT_UNIVERSE catalog_path = staticmethod(ModelServiceClient.catalog_path) parse_catalog_path = staticmethod(ModelServiceClient.parse_catalog_path) model_path = staticmethod(ModelServiceClient.model_path) parse_model_path = staticmethod(ModelServiceClient.parse_model_path) common_billing_account_path = staticmethod( ModelServiceClient.common_billing_account_path ) parse_common_billing_account_path = staticmethod( ModelServiceClient.parse_common_billing_account_path ) common_folder_path = staticmethod(ModelServiceClient.common_folder_path) parse_common_folder_path = staticmethod(ModelServiceClient.parse_common_folder_path) common_organization_path = staticmethod(ModelServiceClient.common_organization_path) parse_common_organization_path = staticmethod( ModelServiceClient.parse_common_organization_path ) common_project_path = staticmethod(ModelServiceClient.common_project_path) parse_common_project_path = staticmethod( ModelServiceClient.parse_common_project_path ) common_location_path = staticmethod(ModelServiceClient.common_location_path) parse_common_location_path = staticmethod( ModelServiceClient.parse_common_location_path )
[docs] @classmethod def from_service_account_info(cls, info: dict, *args, **kwargs): """Creates an instance of this client using the provided credentials info. Args: info (dict): The service account private key info. args: Additional arguments to pass to the constructor. kwargs: Additional arguments to pass to the constructor. Returns: ModelServiceAsyncClient: The constructed client. """ return ModelServiceClient.from_service_account_info.__func__(ModelServiceAsyncClient, info, *args, **kwargs) # type: ignore
[docs] @classmethod def from_service_account_file(cls, filename: str, *args, **kwargs): """Creates an instance of this client using the provided credentials file. Args: filename (str): The path to the service account private key json file. args: Additional arguments to pass to the constructor. kwargs: Additional arguments to pass to the constructor. Returns: ModelServiceAsyncClient: The constructed client. """ return ModelServiceClient.from_service_account_file.__func__(ModelServiceAsyncClient, filename, *args, **kwargs) # type: ignore
from_service_account_json = from_service_account_file
[docs] @classmethod def get_mtls_endpoint_and_cert_source( cls, client_options: Optional[ClientOptions] = None ): """Return the API endpoint and client cert source for mutual TLS. The client cert source is determined in the following order: (1) if `GOOGLE_API_USE_CLIENT_CERTIFICATE` environment variable is not "true", the client cert source is None. (2) if `client_options.client_cert_source` is provided, use the provided one; if the default client cert source exists, use the default one; otherwise the client cert source is None. The API endpoint is determined in the following order: (1) if `client_options.api_endpoint` if provided, use the provided one. (2) if `GOOGLE_API_USE_CLIENT_CERTIFICATE` environment variable is "always", use the default mTLS endpoint; if the environment variable is "never", use the default API endpoint; otherwise if client cert source exists, use the default mTLS endpoint, otherwise use the default API endpoint. More details can be found at https://google.aip.dev/auth/4114. Args: client_options (google.api_core.client_options.ClientOptions): Custom options for the client. Only the `api_endpoint` and `client_cert_source` properties may be used in this method. Returns: Tuple[str, Callable[[], Tuple[bytes, bytes]]]: returns the API endpoint and the client cert source to use. Raises: google.auth.exceptions.MutualTLSChannelError: If any errors happen. """ return ModelServiceClient.get_mtls_endpoint_and_cert_source(client_options) # type: ignore
@property def transport(self) -> ModelServiceTransport: """Returns the transport used by the client instance. Returns: ModelServiceTransport: The transport used by the client instance. """ return self._client.transport @property def api_endpoint(self): """Return the API endpoint used by the client instance. Returns: str: The API endpoint used by the client instance. """ return self._client._api_endpoint @property def universe_domain(self) -> str: """Return the universe domain used by the client instance. Returns: str: The universe domain used by the client instance. """ return self._client._universe_domain get_transport_class = ModelServiceClient.get_transport_class def __init__( self, *, credentials: Optional[ga_credentials.Credentials] = None, transport: Optional[ Union[str, ModelServiceTransport, Callable[..., ModelServiceTransport]] ] = "grpc_asyncio", client_options: Optional[ClientOptions] = None, client_info: gapic_v1.client_info.ClientInfo = DEFAULT_CLIENT_INFO, ) -> None: """Instantiates the model service async client. Args: credentials (Optional[google.auth.credentials.Credentials]): The authorization credentials to attach to requests. These credentials identify the application to the service; if none are specified, the client will attempt to ascertain the credentials from the environment. transport (Optional[Union[str,ModelServiceTransport,Callable[..., ModelServiceTransport]]]): The transport to use, or a Callable that constructs and returns a new transport to use. If a Callable is given, it will be called with the same set of initialization arguments as used in the ModelServiceTransport constructor. If set to None, a transport is chosen automatically. client_options (Optional[Union[google.api_core.client_options.ClientOptions, dict]]): Custom options for the client. 1. The ``api_endpoint`` property can be used to override the default endpoint provided by the client when ``transport`` is not explicitly provided. Only if this property is not set and ``transport`` was not explicitly provided, the endpoint is determined by the GOOGLE_API_USE_MTLS_ENDPOINT environment variable, which have one of the following values: "always" (always use the default mTLS endpoint), "never" (always use the default regular endpoint) and "auto" (auto-switch to the default mTLS endpoint if client certificate is present; this is the default value). 2. If the GOOGLE_API_USE_CLIENT_CERTIFICATE environment variable is "true", then the ``client_cert_source`` property can be used to provide a client certificate for mTLS transport. If not provided, the default SSL client certificate will be used if present. If GOOGLE_API_USE_CLIENT_CERTIFICATE is "false" or not set, no client certificate will be used. 3. The ``universe_domain`` property can be used to override the default "googleapis.com" universe. Note that ``api_endpoint`` property still takes precedence; and ``universe_domain`` is currently not supported for mTLS. client_info (google.api_core.gapic_v1.client_info.ClientInfo): The client info used to send a user-agent string along with API requests. If ``None``, then default info will be used. Generally, you only need to set this if you're developing your own client library. Raises: google.auth.exceptions.MutualTlsChannelError: If mutual TLS transport creation failed for any reason. """ self._client = ModelServiceClient( credentials=credentials, transport=transport, client_options=client_options, client_info=client_info, )
[docs] async def create_model( self, request: Optional[Union[model_service.CreateModelRequest, dict]] = None, *, parent: Optional[str] = None, model: Optional[gcr_model.Model] = None, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: Union[float, object] = gapic_v1.method.DEFAULT, metadata: Sequence[Tuple[str, str]] = (), ) -> operation_async.AsyncOperation: r"""Creates a new model. .. code-block:: python # This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import retail_v2 async def sample_create_model(): # Create a client client = retail_v2.ModelServiceAsyncClient() # Initialize request argument(s) model = retail_v2.Model() model.name = "name_value" model.display_name = "display_name_value" model.type_ = "type__value" request = retail_v2.CreateModelRequest( parent="parent_value", model=model, ) # Make the request operation = client.create_model(request=request) print("Waiting for operation to complete...") response = (await operation).result() # Handle the response print(response) Args: request (Optional[Union[google.cloud.retail_v2.types.CreateModelRequest, dict]]): The request object. Request for creating a model. parent (:class:`str`): Required. The parent resource under which to create the model. Format: ``projects/{project_number}/locations/{location_id}/catalogs/{catalog_id}`` This corresponds to the ``parent`` field on the ``request`` instance; if ``request`` is provided, this should not be set. model (:class:`google.cloud.retail_v2.types.Model`): Required. The payload of the [Model][google.cloud.retail.v2.Model] to create. This corresponds to the ``model`` field on the ``request`` instance; if ``request`` is provided, this should not be set. retry (google.api_core.retry_async.AsyncRetry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. Returns: google.api_core.operation_async.AsyncOperation: An object representing a long-running operation. The result type for the operation will be :class:`google.cloud.retail_v2.types.Model` Metadata that describes the training and serving parameters of a [Model][google.cloud.retail.v2.Model]. A [Model][google.cloud.retail.v2.Model] can be associated with a [ServingConfig][google.cloud.retail.v2.ServingConfig] and then queried through the Predict API. """ # Create or coerce a protobuf request object. # - Quick check: If we got a request object, we should *not* have # gotten any keyword arguments that map to the request. has_flattened_params = any([parent, model]) if request is not None and has_flattened_params: raise ValueError( "If the `request` argument is set, then none of " "the individual field arguments should be set." ) # - Use the request object if provided (there's no risk of modifying the input as # there are no flattened fields), or create one. if not isinstance(request, model_service.CreateModelRequest): request = model_service.CreateModelRequest(request) # If we have keyword arguments corresponding to fields on the # request, apply these. if parent is not None: request.parent = parent if model is not None: request.model = model # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = self._client._transport._wrapped_methods[ self._client._transport.create_model ] # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata((("parent", request.parent),)), ) # Validate the universe domain. self._client._validate_universe_domain() # Send the request. response = await rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # Wrap the response in an operation future. response = operation_async.from_gapic( response, self._client._transport.operations_client, gcr_model.Model, metadata_type=model_service.CreateModelMetadata, ) # Done; return the response. return response
[docs] async def get_model( self, request: Optional[Union[model_service.GetModelRequest, dict]] = None, *, name: Optional[str] = None, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: Union[float, object] = gapic_v1.method.DEFAULT, metadata: Sequence[Tuple[str, str]] = (), ) -> model.Model: r"""Gets a model. .. code-block:: python # This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import retail_v2 async def sample_get_model(): # Create a client client = retail_v2.ModelServiceAsyncClient() # Initialize request argument(s) request = retail_v2.GetModelRequest( name="name_value", ) # Make the request response = await client.get_model(request=request) # Handle the response print(response) Args: request (Optional[Union[google.cloud.retail_v2.types.GetModelRequest, dict]]): The request object. Request for getting a model. name (:class:`str`): Required. The resource name of the [Model][google.cloud.retail.v2.Model] to get. Format: ``projects/{project_number}/locations/{location_id}/catalogs/{catalog}/models/{model_id}`` This corresponds to the ``name`` field on the ``request`` instance; if ``request`` is provided, this should not be set. retry (google.api_core.retry_async.AsyncRetry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. Returns: google.cloud.retail_v2.types.Model: Metadata that describes the training and serving parameters of a [Model][google.cloud.retail.v2.Model]. A [Model][google.cloud.retail.v2.Model] can be associated with a [ServingConfig][google.cloud.retail.v2.ServingConfig] and then queried through the Predict API. """ # Create or coerce a protobuf request object. # - Quick check: If we got a request object, we should *not* have # gotten any keyword arguments that map to the request. has_flattened_params = any([name]) if request is not None and has_flattened_params: raise ValueError( "If the `request` argument is set, then none of " "the individual field arguments should be set." ) # - Use the request object if provided (there's no risk of modifying the input as # there are no flattened fields), or create one. if not isinstance(request, model_service.GetModelRequest): request = model_service.GetModelRequest(request) # If we have keyword arguments corresponding to fields on the # request, apply these. if name is not None: request.name = name # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = self._client._transport._wrapped_methods[ self._client._transport.get_model ] # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata((("name", request.name),)), ) # Validate the universe domain. self._client._validate_universe_domain() # Send the request. response = await rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # Done; return the response. return response
[docs] async def pause_model( self, request: Optional[Union[model_service.PauseModelRequest, dict]] = None, *, name: Optional[str] = None, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: Union[float, object] = gapic_v1.method.DEFAULT, metadata: Sequence[Tuple[str, str]] = (), ) -> model.Model: r"""Pauses the training of an existing model. .. code-block:: python # This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import retail_v2 async def sample_pause_model(): # Create a client client = retail_v2.ModelServiceAsyncClient() # Initialize request argument(s) request = retail_v2.PauseModelRequest( name="name_value", ) # Make the request response = await client.pause_model(request=request) # Handle the response print(response) Args: request (Optional[Union[google.cloud.retail_v2.types.PauseModelRequest, dict]]): The request object. Request for pausing training of a model. name (:class:`str`): Required. The name of the model to pause. Format: ``projects/{project_number}/locations/{location_id}/catalogs/{catalog_id}/models/{model_id}`` This corresponds to the ``name`` field on the ``request`` instance; if ``request`` is provided, this should not be set. retry (google.api_core.retry_async.AsyncRetry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. Returns: google.cloud.retail_v2.types.Model: Metadata that describes the training and serving parameters of a [Model][google.cloud.retail.v2.Model]. A [Model][google.cloud.retail.v2.Model] can be associated with a [ServingConfig][google.cloud.retail.v2.ServingConfig] and then queried through the Predict API. """ # Create or coerce a protobuf request object. # - Quick check: If we got a request object, we should *not* have # gotten any keyword arguments that map to the request. has_flattened_params = any([name]) if request is not None and has_flattened_params: raise ValueError( "If the `request` argument is set, then none of " "the individual field arguments should be set." ) # - Use the request object if provided (there's no risk of modifying the input as # there are no flattened fields), or create one. if not isinstance(request, model_service.PauseModelRequest): request = model_service.PauseModelRequest(request) # If we have keyword arguments corresponding to fields on the # request, apply these. if name is not None: request.name = name # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = self._client._transport._wrapped_methods[ self._client._transport.pause_model ] # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata((("name", request.name),)), ) # Validate the universe domain. self._client._validate_universe_domain() # Send the request. response = await rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # Done; return the response. return response
[docs] async def resume_model( self, request: Optional[Union[model_service.ResumeModelRequest, dict]] = None, *, name: Optional[str] = None, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: Union[float, object] = gapic_v1.method.DEFAULT, metadata: Sequence[Tuple[str, str]] = (), ) -> model.Model: r"""Resumes the training of an existing model. .. code-block:: python # This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import retail_v2 async def sample_resume_model(): # Create a client client = retail_v2.ModelServiceAsyncClient() # Initialize request argument(s) request = retail_v2.ResumeModelRequest( name="name_value", ) # Make the request response = await client.resume_model(request=request) # Handle the response print(response) Args: request (Optional[Union[google.cloud.retail_v2.types.ResumeModelRequest, dict]]): The request object. Request for resuming training of a model. name (:class:`str`): Required. The name of the model to resume. Format: ``projects/{project_number}/locations/{location_id}/catalogs/{catalog_id}/models/{model_id}`` This corresponds to the ``name`` field on the ``request`` instance; if ``request`` is provided, this should not be set. retry (google.api_core.retry_async.AsyncRetry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. Returns: google.cloud.retail_v2.types.Model: Metadata that describes the training and serving parameters of a [Model][google.cloud.retail.v2.Model]. A [Model][google.cloud.retail.v2.Model] can be associated with a [ServingConfig][google.cloud.retail.v2.ServingConfig] and then queried through the Predict API. """ # Create or coerce a protobuf request object. # - Quick check: If we got a request object, we should *not* have # gotten any keyword arguments that map to the request. has_flattened_params = any([name]) if request is not None and has_flattened_params: raise ValueError( "If the `request` argument is set, then none of " "the individual field arguments should be set." ) # - Use the request object if provided (there's no risk of modifying the input as # there are no flattened fields), or create one. if not isinstance(request, model_service.ResumeModelRequest): request = model_service.ResumeModelRequest(request) # If we have keyword arguments corresponding to fields on the # request, apply these. if name is not None: request.name = name # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = self._client._transport._wrapped_methods[ self._client._transport.resume_model ] # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata((("name", request.name),)), ) # Validate the universe domain. self._client._validate_universe_domain() # Send the request. response = await rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # Done; return the response. return response
[docs] async def delete_model( self, request: Optional[Union[model_service.DeleteModelRequest, dict]] = None, *, name: Optional[str] = None, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: Union[float, object] = gapic_v1.method.DEFAULT, metadata: Sequence[Tuple[str, str]] = (), ) -> None: r"""Deletes an existing model. .. code-block:: python # This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import retail_v2 async def sample_delete_model(): # Create a client client = retail_v2.ModelServiceAsyncClient() # Initialize request argument(s) request = retail_v2.DeleteModelRequest( name="name_value", ) # Make the request await client.delete_model(request=request) Args: request (Optional[Union[google.cloud.retail_v2.types.DeleteModelRequest, dict]]): The request object. Request for deleting a model. name (:class:`str`): Required. The resource name of the [Model][google.cloud.retail.v2.Model] to delete. Format: ``projects/{project_number}/locations/{location_id}/catalogs/{catalog_id}/models/{model_id}`` This corresponds to the ``name`` field on the ``request`` instance; if ``request`` is provided, this should not be set. retry (google.api_core.retry_async.AsyncRetry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. """ # Create or coerce a protobuf request object. # - Quick check: If we got a request object, we should *not* have # gotten any keyword arguments that map to the request. has_flattened_params = any([name]) if request is not None and has_flattened_params: raise ValueError( "If the `request` argument is set, then none of " "the individual field arguments should be set." ) # - Use the request object if provided (there's no risk of modifying the input as # there are no flattened fields), or create one. if not isinstance(request, model_service.DeleteModelRequest): request = model_service.DeleteModelRequest(request) # If we have keyword arguments corresponding to fields on the # request, apply these. if name is not None: request.name = name # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = self._client._transport._wrapped_methods[ self._client._transport.delete_model ] # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata((("name", request.name),)), ) # Validate the universe domain. self._client._validate_universe_domain() # Send the request. await rpc( request, retry=retry, timeout=timeout, metadata=metadata, )
[docs] async def list_models( self, request: Optional[Union[model_service.ListModelsRequest, dict]] = None, *, parent: Optional[str] = None, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: Union[float, object] = gapic_v1.method.DEFAULT, metadata: Sequence[Tuple[str, str]] = (), ) -> pagers.ListModelsAsyncPager: r"""Lists all the models linked to this event store. .. code-block:: python # This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import retail_v2 async def sample_list_models(): # Create a client client = retail_v2.ModelServiceAsyncClient() # Initialize request argument(s) request = retail_v2.ListModelsRequest( parent="parent_value", ) # Make the request page_result = client.list_models(request=request) # Handle the response async for response in page_result: print(response) Args: request (Optional[Union[google.cloud.retail_v2.types.ListModelsRequest, dict]]): The request object. Request for listing models associated with a resource. parent (:class:`str`): Required. The parent for which to list models. Format: ``projects/{project_number}/locations/{location_id}/catalogs/{catalog_id}`` This corresponds to the ``parent`` field on the ``request`` instance; if ``request`` is provided, this should not be set. retry (google.api_core.retry_async.AsyncRetry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. Returns: google.cloud.retail_v2.services.model_service.pagers.ListModelsAsyncPager: Response to a ListModelRequest. Iterating over this object will yield results and resolve additional pages automatically. """ # Create or coerce a protobuf request object. # - Quick check: If we got a request object, we should *not* have # gotten any keyword arguments that map to the request. has_flattened_params = any([parent]) if request is not None and has_flattened_params: raise ValueError( "If the `request` argument is set, then none of " "the individual field arguments should be set." ) # - Use the request object if provided (there's no risk of modifying the input as # there are no flattened fields), or create one. if not isinstance(request, model_service.ListModelsRequest): request = model_service.ListModelsRequest(request) # If we have keyword arguments corresponding to fields on the # request, apply these. if parent is not None: request.parent = parent # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = self._client._transport._wrapped_methods[ self._client._transport.list_models ] # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata((("parent", request.parent),)), ) # Validate the universe domain. self._client._validate_universe_domain() # Send the request. response = await rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # This method is paged; wrap the response in a pager, which provides # an `__aiter__` convenience method. response = pagers.ListModelsAsyncPager( method=rpc, request=request, response=response, retry=retry, timeout=timeout, metadata=metadata, ) # Done; return the response. return response
[docs] async def update_model( self, request: Optional[Union[model_service.UpdateModelRequest, dict]] = None, *, model: Optional[gcr_model.Model] = None, update_mask: Optional[field_mask_pb2.FieldMask] = None, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: Union[float, object] = gapic_v1.method.DEFAULT, metadata: Sequence[Tuple[str, str]] = (), ) -> gcr_model.Model: r"""Update of model metadata. Only fields that currently can be updated are: ``filtering_option`` and ``periodic_tuning_state``. If other values are provided, this API method ignores them. .. code-block:: python # This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import retail_v2 async def sample_update_model(): # Create a client client = retail_v2.ModelServiceAsyncClient() # Initialize request argument(s) model = retail_v2.Model() model.name = "name_value" model.display_name = "display_name_value" model.type_ = "type__value" request = retail_v2.UpdateModelRequest( model=model, ) # Make the request response = await client.update_model(request=request) # Handle the response print(response) Args: request (Optional[Union[google.cloud.retail_v2.types.UpdateModelRequest, dict]]): The request object. Request for updating an existing model. model (:class:`google.cloud.retail_v2.types.Model`): Required. The body of the updated [Model][google.cloud.retail.v2.Model]. This corresponds to the ``model`` field on the ``request`` instance; if ``request`` is provided, this should not be set. update_mask (:class:`google.protobuf.field_mask_pb2.FieldMask`): Optional. Indicates which fields in the provided 'model' to update. If not set, by default updates all fields. This corresponds to the ``update_mask`` field on the ``request`` instance; if ``request`` is provided, this should not be set. retry (google.api_core.retry_async.AsyncRetry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. Returns: google.cloud.retail_v2.types.Model: Metadata that describes the training and serving parameters of a [Model][google.cloud.retail.v2.Model]. A [Model][google.cloud.retail.v2.Model] can be associated with a [ServingConfig][google.cloud.retail.v2.ServingConfig] and then queried through the Predict API. """ # Create or coerce a protobuf request object. # - Quick check: If we got a request object, we should *not* have # gotten any keyword arguments that map to the request. has_flattened_params = any([model, update_mask]) if request is not None and has_flattened_params: raise ValueError( "If the `request` argument is set, then none of " "the individual field arguments should be set." ) # - Use the request object if provided (there's no risk of modifying the input as # there are no flattened fields), or create one. if not isinstance(request, model_service.UpdateModelRequest): request = model_service.UpdateModelRequest(request) # If we have keyword arguments corresponding to fields on the # request, apply these. if model is not None: request.model = model if update_mask is not None: request.update_mask = update_mask # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = self._client._transport._wrapped_methods[ self._client._transport.update_model ] # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata( (("model.name", request.model.name),) ), ) # Validate the universe domain. self._client._validate_universe_domain() # Send the request. response = await rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # Done; return the response. return response
[docs] async def tune_model( self, request: Optional[Union[model_service.TuneModelRequest, dict]] = None, *, name: Optional[str] = None, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: Union[float, object] = gapic_v1.method.DEFAULT, metadata: Sequence[Tuple[str, str]] = (), ) -> operation_async.AsyncOperation: r"""Tunes an existing model. .. code-block:: python # This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import retail_v2 async def sample_tune_model(): # Create a client client = retail_v2.ModelServiceAsyncClient() # Initialize request argument(s) request = retail_v2.TuneModelRequest( name="name_value", ) # Make the request operation = client.tune_model(request=request) print("Waiting for operation to complete...") response = (await operation).result() # Handle the response print(response) Args: request (Optional[Union[google.cloud.retail_v2.types.TuneModelRequest, dict]]): The request object. Request to manually start a tuning process now (instead of waiting for the periodically scheduled tuning to happen). name (:class:`str`): Required. The resource name of the model to tune. Format: ``projects/{project_number}/locations/{location_id}/catalogs/{catalog_id}/models/{model_id}`` This corresponds to the ``name`` field on the ``request`` instance; if ``request`` is provided, this should not be set. retry (google.api_core.retry_async.AsyncRetry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. Returns: google.api_core.operation_async.AsyncOperation: An object representing a long-running operation. The result type for the operation will be :class:`google.cloud.retail_v2.types.TuneModelResponse` Response associated with a tune operation. """ # Create or coerce a protobuf request object. # - Quick check: If we got a request object, we should *not* have # gotten any keyword arguments that map to the request. has_flattened_params = any([name]) if request is not None and has_flattened_params: raise ValueError( "If the `request` argument is set, then none of " "the individual field arguments should be set." ) # - Use the request object if provided (there's no risk of modifying the input as # there are no flattened fields), or create one. if not isinstance(request, model_service.TuneModelRequest): request = model_service.TuneModelRequest(request) # If we have keyword arguments corresponding to fields on the # request, apply these. if name is not None: request.name = name # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = self._client._transport._wrapped_methods[ self._client._transport.tune_model ] # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata((("name", request.name),)), ) # Validate the universe domain. self._client._validate_universe_domain() # Send the request. response = await rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # Wrap the response in an operation future. response = operation_async.from_gapic( response, self._client._transport.operations_client, model_service.TuneModelResponse, metadata_type=model_service.TuneModelMetadata, ) # Done; return the response. return response
[docs] async def list_operations( self, request: Optional[operations_pb2.ListOperationsRequest] = None, *, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: Union[float, object] = gapic_v1.method.DEFAULT, metadata: Sequence[Tuple[str, str]] = (), ) -> operations_pb2.ListOperationsResponse: r"""Lists operations that match the specified filter in the request. Args: request (:class:`~.operations_pb2.ListOperationsRequest`): The request object. Request message for `ListOperations` method. retry (google.api_core.retry_async.AsyncRetry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. Returns: ~.operations_pb2.ListOperationsResponse: Response message for ``ListOperations`` method. """ # Create or coerce a protobuf request object. # The request isn't a proto-plus wrapped type, # so it must be constructed via keyword expansion. if isinstance(request, dict): request = operations_pb2.ListOperationsRequest(**request) # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = self.transport._wrapped_methods[self._client._transport.list_operations] # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata((("name", request.name),)), ) # Validate the universe domain. self._client._validate_universe_domain() # Send the request. response = await rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # Done; return the response. return response
[docs] async def get_operation( self, request: Optional[operations_pb2.GetOperationRequest] = None, *, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: Union[float, object] = gapic_v1.method.DEFAULT, metadata: Sequence[Tuple[str, str]] = (), ) -> operations_pb2.Operation: r"""Gets the latest state of a long-running operation. Args: request (:class:`~.operations_pb2.GetOperationRequest`): The request object. Request message for `GetOperation` method. retry (google.api_core.retry_async.AsyncRetry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. Returns: ~.operations_pb2.Operation: An ``Operation`` object. """ # Create or coerce a protobuf request object. # The request isn't a proto-plus wrapped type, # so it must be constructed via keyword expansion. if isinstance(request, dict): request = operations_pb2.GetOperationRequest(**request) # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = self.transport._wrapped_methods[self._client._transport.get_operation] # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata((("name", request.name),)), ) # Validate the universe domain. self._client._validate_universe_domain() # Send the request. response = await rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # Done; return the response. return response
async def __aenter__(self) -> "ModelServiceAsyncClient": return self async def __aexit__(self, exc_type, exc, tb): await self.transport.close()
DEFAULT_CLIENT_INFO = gapic_v1.client_info.ClientInfo( gapic_version=package_version.__version__ ) __all__ = ("ModelServiceAsyncClient",)