Types for Google Cloud Videointelligence v1 API¶
- class google.cloud.videointelligence_v1.types.AnnotateVideoProgress(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Video annotation progress. Included in the
metadata
field of theOperation
returned by theGetOperation
call of thegoogle::longrunning::Operations
service.- annotation_progress¶
Progress metadata for all videos specified in
AnnotateVideoRequest
.- Type
MutableSequence[google.cloud.videointelligence_v1.types.VideoAnnotationProgress]
- class google.cloud.videointelligence_v1.types.AnnotateVideoRequest(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Video annotation request.
- input_uri¶
Input video location. Currently, only Cloud Storage URIs are supported. URIs must be specified in the following format:
gs://bucket-id/object-id
(other URI formats return [google.rpc.Code.INVALID_ARGUMENT][google.rpc.Code.INVALID_ARGUMENT]). For more information, see Request URIs. To identify multiple videos, a video URI may include wildcards in theobject-id
. Supported wildcards: ‘*’ to match 0 or more characters; ‘?’ to match 1 character. If unset, the input video should be embedded in the request asinput_content
. If set,input_content
must be unset.- Type
- input_content¶
The video data bytes. If unset, the input video(s) should be specified via the
input_uri
. If set,input_uri
must be unset.- Type
- features¶
Required. Requested video annotation features.
- Type
MutableSequence[google.cloud.videointelligence_v1.types.Feature]
- video_context¶
Additional video context and/or feature-specific parameters.
- output_uri¶
Optional. Location where the output (in JSON format) should be stored. Currently, only Cloud Storage URIs are supported. These must be specified in the following format:
gs://bucket-id/object-id
(other URI formats return [google.rpc.Code.INVALID_ARGUMENT][google.rpc.Code.INVALID_ARGUMENT]). For more information, see Request URIs.- Type
- class google.cloud.videointelligence_v1.types.AnnotateVideoResponse(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Video annotation response. Included in the
response
field of theOperation
returned by theGetOperation
call of thegoogle::longrunning::Operations
service.- annotation_results¶
Annotation results for all videos specified in
AnnotateVideoRequest
.- Type
MutableSequence[google.cloud.videointelligence_v1.types.VideoAnnotationResults]
- class google.cloud.videointelligence_v1.types.DetectedAttribute(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
A generic detected attribute represented by name in string format.
- name¶
The name of the attribute, for example, glasses, dark_glasses, mouth_open. A full list of supported type names will be provided in the document.
- Type
- class google.cloud.videointelligence_v1.types.DetectedLandmark(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
A generic detected landmark represented by name in string format and a 2D location.
- point¶
The 2D point of the detected landmark using the normalized image coordindate system. The normalized coordinates have the range from 0 to 1.
- class google.cloud.videointelligence_v1.types.Entity(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Detected entity from video analysis.
- entity_id¶
Opaque entity ID. Some IDs may be available in Google Knowledge Graph Search API.
- Type
- class google.cloud.videointelligence_v1.types.ExplicitContentAnnotation(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Explicit content annotation (based on per-frame visual signals only). If no explicit content has been detected in a frame, no annotations are present for that frame.
- frames¶
All video frames where explicit content was detected.
- Type
MutableSequence[google.cloud.videointelligence_v1.types.ExplicitContentFrame]
- class google.cloud.videointelligence_v1.types.ExplicitContentDetectionConfig(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Config for EXPLICIT_CONTENT_DETECTION.
- class google.cloud.videointelligence_v1.types.ExplicitContentFrame(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Video frame level annotation results for explicit content.
- time_offset¶
Time-offset, relative to the beginning of the video, corresponding to the video frame for this location.
- pornography_likelihood¶
Likelihood of the pornography content..
- class google.cloud.videointelligence_v1.types.FaceAnnotation(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Deprecated. No effect.
- segments¶
All video segments where a face was detected.
- Type
MutableSequence[google.cloud.videointelligence_v1.types.FaceSegment]
- frames¶
All video frames where a face was detected.
- Type
MutableSequence[google.cloud.videointelligence_v1.types.FaceFrame]
- class google.cloud.videointelligence_v1.types.FaceDetectionAnnotation(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Face detection annotation.
- tracks¶
The face tracks with attributes.
- Type
MutableSequence[google.cloud.videointelligence_v1.types.Track]
- class google.cloud.videointelligence_v1.types.FaceDetectionConfig(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Config for FACE_DETECTION.
- model¶
Model to use for face detection. Supported values: “builtin/stable” (the default if unset) and “builtin/latest”.
- Type
- include_bounding_boxes¶
Whether bounding boxes are included in the face annotation output.
- Type
- class google.cloud.videointelligence_v1.types.FaceFrame(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Deprecated. No effect.
- normalized_bounding_boxes¶
Normalized Bounding boxes in a frame. There can be more than one boxes if the same face is detected in multiple locations within the current frame.
- Type
MutableSequence[google.cloud.videointelligence_v1.types.NormalizedBoundingBox]
- time_offset¶
Time-offset, relative to the beginning of the video, corresponding to the video frame for this location.
- class google.cloud.videointelligence_v1.types.FaceSegment(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Video segment level annotation results for face detection.
- segment¶
Video segment where a face was detected.
- class google.cloud.videointelligence_v1.types.Feature(value)[source]¶
Bases:
proto.enums.Enum
Video annotation feature.
- Values:
- FEATURE_UNSPECIFIED (0):
Unspecified.
- LABEL_DETECTION (1):
Label detection. Detect objects, such as dog or flower.
- SHOT_CHANGE_DETECTION (2):
Shot change detection.
- EXPLICIT_CONTENT_DETECTION (3):
Explicit content detection.
- FACE_DETECTION (4):
Human face detection.
- SPEECH_TRANSCRIPTION (6):
Speech transcription.
- TEXT_DETECTION (7):
OCR text detection and tracking.
- OBJECT_TRACKING (9):
Object detection and tracking.
- LOGO_RECOGNITION (12):
Logo detection, tracking, and recognition.
- PERSON_DETECTION (14):
Person detection.
- class google.cloud.videointelligence_v1.types.LabelAnnotation(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Label annotation.
- entity¶
Detected entity.
- category_entities¶
Common categories for the detected entity. For example, when the label is
Terrier
, the category is likelydog
. And in some cases there might be more than one categories e.g.,Terrier
could also be apet
.- Type
MutableSequence[google.cloud.videointelligence_v1.types.Entity]
- segments¶
All video segments where a label was detected.
- Type
MutableSequence[google.cloud.videointelligence_v1.types.LabelSegment]
- frames¶
All video frames where a label was detected.
- Type
MutableSequence[google.cloud.videointelligence_v1.types.LabelFrame]
- class google.cloud.videointelligence_v1.types.LabelDetectionConfig(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Config for LABEL_DETECTION.
- label_detection_mode¶
What labels should be detected with LABEL_DETECTION, in addition to video-level labels or segment-level labels. If unspecified, defaults to
SHOT_MODE
.
- stationary_camera¶
Whether the video has been shot from a stationary (i.e., non-moving) camera. When set to true, might improve detection accuracy for moving objects. Should be used with
SHOT_AND_FRAME_MODE
enabled.- Type
- model¶
Model to use for label detection. Supported values: “builtin/stable” (the default if unset) and “builtin/latest”.
- Type
- frame_confidence_threshold¶
The confidence threshold we perform filtering on the labels from frame-level detection. If not set, it is set to 0.4 by default. The valid range for this threshold is [0.1, 0.9]. Any value set outside of this range will be clipped. Note: For best results, follow the default threshold. We will update the default threshold everytime when we release a new model.
- Type
- video_confidence_threshold¶
The confidence threshold we perform filtering on the labels from video-level and shot-level detections. If not set, it’s set to 0.3 by default. The valid range for this threshold is [0.1, 0.9]. Any value set outside of this range will be clipped. Note: For best results, follow the default threshold. We will update the default threshold everytime when we release a new model.
- Type
- class google.cloud.videointelligence_v1.types.LabelDetectionMode(value)[source]¶
Bases:
proto.enums.Enum
Label detection mode.
- Values:
- LABEL_DETECTION_MODE_UNSPECIFIED (0):
Unspecified.
- SHOT_MODE (1):
Detect shot-level labels.
- FRAME_MODE (2):
Detect frame-level labels.
- SHOT_AND_FRAME_MODE (3):
Detect both shot-level and frame-level labels.
- class google.cloud.videointelligence_v1.types.LabelFrame(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Video frame level annotation results for label detection.
- time_offset¶
Time-offset, relative to the beginning of the video, corresponding to the video frame for this location.
- class google.cloud.videointelligence_v1.types.LabelSegment(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Video segment level annotation results for label detection.
- segment¶
Video segment where a label was detected.
- class google.cloud.videointelligence_v1.types.Likelihood(value)[source]¶
Bases:
proto.enums.Enum
Bucketized representation of likelihood.
- Values:
- LIKELIHOOD_UNSPECIFIED (0):
Unspecified likelihood.
- VERY_UNLIKELY (1):
Very unlikely.
- UNLIKELY (2):
Unlikely.
- POSSIBLE (3):
Possible.
- LIKELY (4):
Likely.
- VERY_LIKELY (5):
Very likely.
- class google.cloud.videointelligence_v1.types.LogoRecognitionAnnotation(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Annotation corresponding to one detected, tracked and recognized logo class.
- entity¶
Entity category information to specify the logo class that all the logo tracks within this LogoRecognitionAnnotation are recognized as.
- tracks¶
All logo tracks where the recognized logo appears. Each track corresponds to one logo instance appearing in consecutive frames.
- Type
MutableSequence[google.cloud.videointelligence_v1.types.Track]
- segments¶
All video segments where the recognized logo appears. There might be multiple instances of the same logo class appearing in one VideoSegment.
- Type
MutableSequence[google.cloud.videointelligence_v1.types.VideoSegment]
- class google.cloud.videointelligence_v1.types.NormalizedBoundingBox(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Normalized bounding box. The normalized vertex coordinates are relative to the original image. Range: [0, 1].
- class google.cloud.videointelligence_v1.types.NormalizedBoundingPoly(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Normalized bounding polygon for text (that might not be aligned with axis). Contains list of the corner points in clockwise order starting from top-left corner. For example, for a rectangular bounding box: When the text is horizontal it might look like: 0—-1 | | 3—-2
When it’s clockwise rotated 180 degrees around the top-left corner it becomes: 2—-3 | | 1—-0
and the vertex order will still be (0, 1, 2, 3). Note that values can be less than 0, or greater than 1 due to trignometric calculations for location of the box.
- vertices¶
Normalized vertices of the bounding polygon.
- Type
MutableSequence[google.cloud.videointelligence_v1.types.NormalizedVertex]
- class google.cloud.videointelligence_v1.types.NormalizedVertex(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
A vertex represents a 2D point in the image. NOTE: the normalized vertex coordinates are relative to the original image and range from 0 to 1.
- class google.cloud.videointelligence_v1.types.ObjectTrackingAnnotation(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Annotations corresponding to one tracked object.
This message has oneof fields (mutually exclusive fields). For each oneof, at most one member field can be set at the same time. Setting any member of the oneof automatically clears all other members.
- segment¶
Non-streaming batch mode ONLY. Each object track corresponds to one video segment where it appears.
This field is a member of oneof
track_info
.
- track_id¶
Streaming mode ONLY. In streaming mode, we do not know the end time of a tracked object before it is completed. Hence, there is no VideoSegment info returned. Instead, we provide a unique identifiable integer track_id so that the customers can correlate the results of the ongoing ObjectTrackAnnotation of the same track_id over time.
This field is a member of oneof
track_info
.- Type
- entity¶
Entity to specify the object category that this track is labeled as.
- frames¶
Information corresponding to all frames where this object track appears. Non-streaming batch mode: it may be one or multiple ObjectTrackingFrame messages in frames. Streaming mode: it can only be one ObjectTrackingFrame message in frames.
- Type
MutableSequence[google.cloud.videointelligence_v1.types.ObjectTrackingFrame]
- class google.cloud.videointelligence_v1.types.ObjectTrackingConfig(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Config for OBJECT_TRACKING.
- class google.cloud.videointelligence_v1.types.ObjectTrackingFrame(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Video frame level annotations for object detection and tracking. This field stores per frame location, time offset, and confidence.
- normalized_bounding_box¶
The normalized bounding box location of this object track for the frame.
- time_offset¶
The timestamp of the frame in microseconds.
- class google.cloud.videointelligence_v1.types.PersonDetectionAnnotation(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Person detection annotation per video.
- tracks¶
The detected tracks of a person.
- Type
MutableSequence[google.cloud.videointelligence_v1.types.Track]
- class google.cloud.videointelligence_v1.types.PersonDetectionConfig(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Config for PERSON_DETECTION.
- include_bounding_boxes¶
Whether bounding boxes are included in the person detection annotation output.
- Type
- include_pose_landmarks¶
Whether to enable pose landmarks detection. Ignored if ‘include_bounding_boxes’ is set to false.
- Type
- class google.cloud.videointelligence_v1.types.ShotChangeDetectionConfig(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Config for SHOT_CHANGE_DETECTION.
- class google.cloud.videointelligence_v1.types.SpeechContext(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Provides “hints” to the speech recognizer to favor specific words and phrases in the results.
- phrases¶
Optional. A list of strings containing words and phrases “hints” so that the speech recognition is more likely to recognize them. This can be used to improve the accuracy for specific words and phrases, for example, if specific commands are typically spoken by the user. This can also be used to add additional words to the vocabulary of the recognizer. See usage limits.
- Type
MutableSequence[str]
- class google.cloud.videointelligence_v1.types.SpeechRecognitionAlternative(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Alternative hypotheses (a.k.a. n-best list).
- confidence¶
Output only. The confidence estimate between 0.0 and 1.0. A higher number indicates an estimated greater likelihood that the recognized words are correct. This field is set only for the top alternative. This field is not guaranteed to be accurate and users should not rely on it to be always provided. The default of 0.0 is a sentinel value indicating
confidence
was not set.- Type
- words¶
Output only. A list of word-specific information for each recognized word. Note: When
enable_speaker_diarization
is set to true, you will see all the words from the beginning of the audio.- Type
MutableSequence[google.cloud.videointelligence_v1.types.WordInfo]
- class google.cloud.videointelligence_v1.types.SpeechTranscription(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
A speech recognition result corresponding to a portion of the audio.
- alternatives¶
May contain one or more recognition hypotheses (up to the maximum specified in
max_alternatives
). These alternatives are ordered in terms of accuracy, with the top (first) alternative being the most probable, as ranked by the recognizer.- Type
MutableSequence[google.cloud.videointelligence_v1.types.SpeechRecognitionAlternative]
- class google.cloud.videointelligence_v1.types.SpeechTranscriptionConfig(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Config for SPEECH_TRANSCRIPTION.
- language_code¶
Required. Required The language of the supplied audio as a BCP-47 language tag. Example: “en-US”. See Language Support for a list of the currently supported language codes.
- Type
- max_alternatives¶
Optional. Maximum number of recognition hypotheses to be returned. Specifically, the maximum number of
SpeechRecognitionAlternative
messages within eachSpeechTranscription
. The server may return fewer thanmax_alternatives
. Valid values are0
-30
. A value of0
or1
will return a maximum of one. If omitted, will return a maximum of one.- Type
- filter_profanity¶
Optional. If set to
true
, the server will attempt to filter out profanities, replacing all but the initial character in each filtered word with asterisks, e.g. “f***”. If set tofalse
or omitted, profanities won’t be filtered out.- Type
- speech_contexts¶
Optional. A means to provide context to assist the speech recognition.
- Type
MutableSequence[google.cloud.videointelligence_v1.types.SpeechContext]
- enable_automatic_punctuation¶
Optional. If ‘true’, adds punctuation to recognition result hypotheses. This feature is only available in select languages. Setting this for requests in other languages has no effect at all. The default ‘false’ value does not add punctuation to result hypotheses. NOTE: “This is currently offered as an experimental service, complimentary to all users. In the future this may be exclusively available as a premium feature.”.
- Type
- audio_tracks¶
Optional. For file formats, such as MXF or MKV, supporting multiple audio tracks, specify up to two tracks. Default: track 0.
- Type
MutableSequence[int]
- enable_speaker_diarization¶
Optional. If ‘true’, enables speaker detection for each recognized word in the top alternative of the recognition result using a speaker_tag provided in the WordInfo. Note: When this is true, we send all the words from the beginning of the audio for the top alternative in every consecutive response. This is done in order to improve our speaker tags as our models learn to identify the speakers in the conversation over time.
- Type
- diarization_speaker_count¶
Optional. If set, specifies the estimated number of speakers in the conversation. If not set, defaults to ‘2’. Ignored unless enable_speaker_diarization is set to true.
- Type
- class google.cloud.videointelligence_v1.types.TextAnnotation(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Annotations related to one detected OCR text snippet. This will contain the corresponding text, confidence value, and frame level information for each detection.
- segments¶
All video segments where OCR detected text appears.
- Type
MutableSequence[google.cloud.videointelligence_v1.types.TextSegment]
- class google.cloud.videointelligence_v1.types.TextDetectionConfig(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Config for TEXT_DETECTION.
- class google.cloud.videointelligence_v1.types.TextFrame(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Video frame level annotation results for text annotation (OCR). Contains information regarding timestamp and bounding box locations for the frames containing detected OCR text snippets.
- rotated_bounding_box¶
Bounding polygon of the detected text for this frame.
- time_offset¶
Timestamp of this frame.
- class google.cloud.videointelligence_v1.types.TextSegment(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Video segment level annotation results for text detection.
- segment¶
Video segment where a text snippet was detected.
- confidence¶
Confidence for the track of detected text. It is calculated as the highest over all frames where OCR detected text appears.
- Type
- frames¶
Information related to the frames where OCR detected text appears.
- Type
MutableSequence[google.cloud.videointelligence_v1.types.TextFrame]
- class google.cloud.videointelligence_v1.types.TimestampedObject(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
For tracking related features. An object at time_offset with attributes, and located with normalized_bounding_box.
- normalized_bounding_box¶
Normalized Bounding box in a frame, where the object is located.
- time_offset¶
Time-offset, relative to the beginning of the video, corresponding to the video frame for this object.
- attributes¶
Optional. The attributes of the object in the bounding box.
- Type
MutableSequence[google.cloud.videointelligence_v1.types.DetectedAttribute]
- landmarks¶
Optional. The detected landmarks.
- Type
MutableSequence[google.cloud.videointelligence_v1.types.DetectedLandmark]
- class google.cloud.videointelligence_v1.types.Track(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
A track of an object instance.
- segment¶
Video segment of a track.
- timestamped_objects¶
The object with timestamp and attributes per frame in the track.
- Type
MutableSequence[google.cloud.videointelligence_v1.types.TimestampedObject]
- attributes¶
Optional. Attributes in the track level.
- Type
MutableSequence[google.cloud.videointelligence_v1.types.DetectedAttribute]
- class google.cloud.videointelligence_v1.types.VideoAnnotationProgress(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Annotation progress for a single video.
- input_uri¶
Video file location in Cloud Storage.
- Type
- progress_percent¶
Approximate percentage processed thus far. Guaranteed to be 100 when fully processed.
- Type
- start_time¶
Time when the request was received.
- update_time¶
Time of the most recent update.
- feature¶
Specifies which feature is being tracked if the request contains more than one feature.
- segment¶
Specifies which segment is being tracked if the request contains more than one segment.
- class google.cloud.videointelligence_v1.types.VideoAnnotationResults(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Annotation results for a single video.
- input_uri¶
Video file location in Cloud Storage.
- Type
- segment¶
Video segment on which the annotation is run.
- segment_label_annotations¶
Topical label annotations on video level or user-specified segment level. There is exactly one element for each unique label.
- Type
MutableSequence[google.cloud.videointelligence_v1.types.LabelAnnotation]
- segment_presence_label_annotations¶
Presence label annotations on video level or user-specified segment level. There is exactly one element for each unique label. Compared to the existing topical
segment_label_annotations
, this field presents more fine-grained, segment-level labels detected in video content and is made available only when the client setsLabelDetectionConfig.model
to “builtin/latest” in the request.- Type
MutableSequence[google.cloud.videointelligence_v1.types.LabelAnnotation]
- shot_label_annotations¶
Topical label annotations on shot level. There is exactly one element for each unique label.
- Type
MutableSequence[google.cloud.videointelligence_v1.types.LabelAnnotation]
- shot_presence_label_annotations¶
Presence label annotations on shot level. There is exactly one element for each unique label. Compared to the existing topical
shot_label_annotations
, this field presents more fine-grained, shot-level labels detected in video content and is made available only when the client setsLabelDetectionConfig.model
to “builtin/latest” in the request.- Type
MutableSequence[google.cloud.videointelligence_v1.types.LabelAnnotation]
- frame_label_annotations¶
Label annotations on frame level. There is exactly one element for each unique label.
- Type
MutableSequence[google.cloud.videointelligence_v1.types.LabelAnnotation]
- face_annotations¶
Deprecated. Please use
face_detection_annotations
instead.- Type
MutableSequence[google.cloud.videointelligence_v1.types.FaceAnnotation]
- face_detection_annotations¶
Face detection annotations.
- Type
MutableSequence[google.cloud.videointelligence_v1.types.FaceDetectionAnnotation]
- shot_annotations¶
Shot annotations. Each shot is represented as a video segment.
- Type
MutableSequence[google.cloud.videointelligence_v1.types.VideoSegment]
- explicit_annotation¶
Explicit content annotation.
- speech_transcriptions¶
Speech transcription.
- Type
MutableSequence[google.cloud.videointelligence_v1.types.SpeechTranscription]
- text_annotations¶
OCR text detection and tracking. Annotations for list of detected text snippets. Each will have list of frame information associated with it.
- Type
MutableSequence[google.cloud.videointelligence_v1.types.TextAnnotation]
- object_annotations¶
Annotations for list of objects detected and tracked in video.
- Type
MutableSequence[google.cloud.videointelligence_v1.types.ObjectTrackingAnnotation]
- logo_recognition_annotations¶
Annotations for list of logos detected, tracked and recognized in video.
- Type
MutableSequence[google.cloud.videointelligence_v1.types.LogoRecognitionAnnotation]
- person_detection_annotations¶
Person detection annotations.
- Type
MutableSequence[google.cloud.videointelligence_v1.types.PersonDetectionAnnotation]
- error¶
If set, indicates an error. Note that for a single
AnnotateVideoRequest
some videos may succeed and some may fail.- Type
google.rpc.status_pb2.Status
- class google.cloud.videointelligence_v1.types.VideoContext(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Video context and/or feature-specific parameters.
- segments¶
Video segments to annotate. The segments may overlap and are not required to be contiguous or span the whole video. If unspecified, each video is treated as a single segment.
- Type
MutableSequence[google.cloud.videointelligence_v1.types.VideoSegment]
- label_detection_config¶
Config for LABEL_DETECTION.
- shot_change_detection_config¶
Config for SHOT_CHANGE_DETECTION.
- explicit_content_detection_config¶
Config for EXPLICIT_CONTENT_DETECTION.
- face_detection_config¶
Config for FACE_DETECTION.
- speech_transcription_config¶
Config for SPEECH_TRANSCRIPTION.
- text_detection_config¶
Config for TEXT_DETECTION.
- person_detection_config¶
Config for PERSON_DETECTION.
- object_tracking_config¶
Config for OBJECT_TRACKING.
- class google.cloud.videointelligence_v1.types.VideoSegment(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Video segment.
- start_time_offset¶
Time-offset, relative to the beginning of the video, corresponding to the start of the segment (inclusive).
- end_time_offset¶
Time-offset, relative to the beginning of the video, corresponding to the end of the segment (inclusive).
- class google.cloud.videointelligence_v1.types.WordInfo(mapping=None, *, ignore_unknown_fields=False, **kwargs)[source]¶
Bases:
proto.message.Message
Word-specific information for recognized words. Word information is only included in the response when certain request parameters are set, such as
enable_word_time_offsets
.- start_time¶
Time offset relative to the beginning of the audio, and corresponding to the start of the spoken word. This field is only set if
enable_word_time_offsets=true
and only in the top hypothesis. This is an experimental feature and the accuracy of the time offset can vary.
- end_time¶
Time offset relative to the beginning of the audio, and corresponding to the end of the spoken word. This field is only set if
enable_word_time_offsets=true
and only in the top hypothesis. This is an experimental feature and the accuracy of the time offset can vary.
- confidence¶
Output only. The confidence estimate between 0.0 and 1.0. A higher number indicates an estimated greater likelihood that the recognized words are correct. This field is set only for the top alternative. This field is not guaranteed to be accurate and users should not rely on it to be always provided. The default of 0.0 is a sentinel value indicating
confidence
was not set.- Type