Class: Google::Apis::MlV1::GoogleCloudMlV1TrainingInput
- Inherits:
-
Object
- Object
- Google::Apis::MlV1::GoogleCloudMlV1TrainingInput
- Includes:
- Core::Hashable, Core::JsonObjectSupport
- Defined in:
- generated/google/apis/ml_v1/classes.rb,
generated/google/apis/ml_v1/representations.rb,
generated/google/apis/ml_v1/representations.rb
Overview
Represents input parameters for a training job. When using the gcloud command to submit your training job, you can specify the input parameters as command-line arguments and/or in a YAML configuration file referenced from the --config command-line argument. For details, see the guide to submitting a training job.
Instance Attribute Summary collapse
-
#args ⇒ Array<String>
Optional.
-
#hyperparameters ⇒ Google::Apis::MlV1::GoogleCloudMlV1HyperparameterSpec
Represents a set of hyperparameters to optimize.
-
#job_dir ⇒ String
Optional.
-
#master_config ⇒ Google::Apis::MlV1::GoogleCloudMlV1ReplicaConfig
Represents the configuration for a replica in a cluster.
-
#master_type ⇒ String
Optional.
-
#package_uris ⇒ Array<String>
Required.
-
#parameter_server_config ⇒ Google::Apis::MlV1::GoogleCloudMlV1ReplicaConfig
Represents the configuration for a replica in a cluster.
-
#parameter_server_count ⇒ Fixnum
Optional.
-
#parameter_server_type ⇒ String
Optional.
-
#python_module ⇒ String
Required.
-
#python_version ⇒ String
Optional.
-
#region ⇒ String
Required.
-
#runtime_version ⇒ String
Optional.
-
#scale_tier ⇒ String
Required.
-
#use_chief_in_tf_config ⇒ Boolean
(also: #use_chief_in_tf_config?)
Optional.
-
#worker_config ⇒ Google::Apis::MlV1::GoogleCloudMlV1ReplicaConfig
Represents the configuration for a replica in a cluster.
-
#worker_count ⇒ Fixnum
Optional.
-
#worker_type ⇒ String
Optional.
Instance Method Summary collapse
-
#initialize(**args) ⇒ GoogleCloudMlV1TrainingInput
constructor
A new instance of GoogleCloudMlV1TrainingInput.
-
#update!(**args) ⇒ Object
Update properties of this object.
Methods included from Core::JsonObjectSupport
Methods included from Core::Hashable
Constructor Details
#initialize(**args) ⇒ GoogleCloudMlV1TrainingInput
Returns a new instance of GoogleCloudMlV1TrainingInput
1554 1555 1556 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1554 def initialize(**args) update!(**args) end |
Instance Attribute Details
#args ⇒ Array<String>
Optional. Command line arguments to pass to the program.
Corresponds to the JSON property args
1313 1314 1315 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1313 def args @args end |
#hyperparameters ⇒ Google::Apis::MlV1::GoogleCloudMlV1HyperparameterSpec
Represents a set of hyperparameters to optimize.
Corresponds to the JSON property hyperparameters
1318 1319 1320 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1318 def hyperparameters @hyperparameters end |
#job_dir ⇒ String
Optional. A Google Cloud Storage path in which to store training outputs
and other data needed for training. This path is passed to your TensorFlow
program as the '--job-dir' command-line argument. The benefit of specifying
this field is that Cloud ML validates the path for use in training.
Corresponds to the JSON property jobDir
1326 1327 1328 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1326 def job_dir @job_dir end |
#master_config ⇒ Google::Apis::MlV1::GoogleCloudMlV1ReplicaConfig
Represents the configuration for a replica in a cluster.
Corresponds to the JSON property masterConfig
1331 1332 1333 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1331 def master_config @master_config end |
#master_type ⇒ String
Optional. Specifies the type of virtual machine to use for your training job's master worker. The following types are supported:
- standard
- A basic machine configuration suitable for training simple models with small to moderate datasets.
- large_model
- A machine with a lot of memory, specially suited for parameter servers when your model is large (having many hidden layers or layers with very large numbers of nodes).
- complex_model_s
- A machine suitable for the master and workers of the cluster when your model requires more computation than the standard machine can handle satisfactorily.
- complex_model_m
- A machine with roughly twice the number of cores and roughly double the memory of complex_model_s.
- complex_model_l
- A machine with roughly twice the number of cores and roughly double the memory of complex_model_m.
- standard_gpu
- A machine equivalent to standard that also includes a single NVIDIA Tesla K80 GPU. See more about using GPUs to train your model.
- complex_model_m_gpu
- A machine equivalent to complex_model_m that also includes four NVIDIA Tesla K80 GPUs.
- complex_model_l_gpu
- A machine equivalent to complex_model_l that also includes eight NVIDIA Tesla K80 GPUs.
- standard_p100
- A machine equivalent to standard that also includes a single NVIDIA Tesla P100 GPU.
- complex_model_m_p100
- A machine equivalent to complex_model_m that also includes four NVIDIA Tesla P100 GPUs.
- standard_v100
- A machine equivalent to standard that also includes a single NVIDIA Tesla V100 GPU.
- large_model_v100
- A machine equivalent to large_model that also includes a single NVIDIA Tesla V100 GPU.
- complex_model_m_v100
- A machine equivalent to complex_model_m that also includes four NVIDIA Tesla V100 GPUs.
- complex_model_l_v100
- A machine equivalent to complex_model_l that also includes eight NVIDIA Tesla V100 GPUs.
- cloud_tpu
- A TPU VM including one Cloud TPU. See more about using TPUs to train your model.
You may also use certain Compute Engine machine types directly in this field. The following types are supported:
n1-standard-4
n1-standard-8
n1-standard-16
n1-standard-32
n1-standard-64
n1-standard-96
n1-highmem-2
n1-highmem-4
n1-highmem-8
n1-highmem-16
n1-highmem-32
n1-highmem-64
n1-highmem-96
n1-highcpu-16
n1-highcpu-32
n1-highcpu-64
n1-highcpu-96
See more about using Compute Engine machine types. You must set this value whenscaleTier
is set toCUSTOM
. Corresponds to the JSON propertymasterType
1442 1443 1444 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1442 def master_type @master_type end |
#package_uris ⇒ Array<String>
Required. The Google Cloud Storage location of the packages with
the training program and any additional dependencies.
The maximum number of package URIs is 100.
Corresponds to the JSON property packageUris
1449 1450 1451 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1449 def package_uris @package_uris end |
#parameter_server_config ⇒ Google::Apis::MlV1::GoogleCloudMlV1ReplicaConfig
Represents the configuration for a replica in a cluster.
Corresponds to the JSON property parameterServerConfig
1454 1455 1456 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1454 def parameter_server_config @parameter_server_config end |
#parameter_server_count ⇒ Fixnum
Optional. The number of parameter server replicas to use for the training
job. Each replica in the cluster will be of the type specified in
parameter_server_type
.
This value can only be used when scale_tier
is set to CUSTOM
.If you
set this value, you must also set parameter_server_type
.
The default value is zero.
Corresponds to the JSON property parameterServerCount
1464 1465 1466 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1464 def parameter_server_count @parameter_server_count end |
#parameter_server_type ⇒ String
Optional. Specifies the type of virtual machine to use for your training
job's parameter server.
The supported values are the same as those described in the entry for
master_type
.
This value must be consistent with the category of machine type that
masterType
uses. In other words, both must be AI Platform machine
types or both must be Compute Engine machine types.
This value must be present when scaleTier
is set to CUSTOM
and
parameter_server_count
is greater than zero.
Corresponds to the JSON property parameterServerType
1477 1478 1479 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1477 def parameter_server_type @parameter_server_type end |
#python_module ⇒ String
Required. The Python module name to run after installing the packages.
Corresponds to the JSON property pythonModule
1482 1483 1484 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1482 def python_module @python_module end |
#python_version ⇒ String
Optional. The version of Python used in training. If not set, the default
version is '2.7'. Python '3.5' is available when runtime_version
is set
to '1.4' and above. Python '2.7' works with all supported
runtime versions.
Corresponds to the JSON property pythonVersion
1490 1491 1492 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1490 def python_version @python_version end |
#region ⇒ String
Required. The Google Compute Engine region to run the training job in.
See the available regions
for AI Platform services.
Corresponds to the JSON property region
1497 1498 1499 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1497 def region @region end |
#runtime_version ⇒ String
Optional. The AI Platform runtime version to use for training. If not
set, AI Platform uses the default stable version, 1.0. For more
information, see the
runtime version list
and
how to manage runtime versions.
Corresponds to the JSON property runtimeVersion
1507 1508 1509 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1507 def runtime_version @runtime_version end |
#scale_tier ⇒ String
Required. Specifies the machine types, the number of replicas for workers
and parameter servers.
Corresponds to the JSON property scaleTier
1513 1514 1515 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1513 def scale_tier @scale_tier end |
#use_chief_in_tf_config ⇒ Boolean Also known as: use_chief_in_tf_config?
Optional. Use 'chief' instead of 'master' in TF_CONFIG when Custom
Container is used and evaluator is not specified.
Defaults to false.
Corresponds to the JSON property useChiefInTfConfig
1520 1521 1522 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1520 def use_chief_in_tf_config @use_chief_in_tf_config end |
#worker_config ⇒ Google::Apis::MlV1::GoogleCloudMlV1ReplicaConfig
Represents the configuration for a replica in a cluster.
Corresponds to the JSON property workerConfig
1526 1527 1528 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1526 def worker_config @worker_config end |
#worker_count ⇒ Fixnum
Optional. The number of worker replicas to use for the training job. Each
replica in the cluster will be of the type specified in worker_type
.
This value can only be used when scale_tier
is set to CUSTOM
. If you
set this value, you must also set worker_type
.
The default value is zero.
Corresponds to the JSON property workerCount
1535 1536 1537 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1535 def worker_count @worker_count end |
#worker_type ⇒ String
Optional. Specifies the type of virtual machine to use for your training
job's worker nodes.
The supported values are the same as those described in the entry for
masterType
.
This value must be consistent with the category of machine type that
masterType
uses. In other words, both must be AI Platform machine
types or both must be Compute Engine machine types.
If you use cloud_tpu
for this value, see special instructions for
configuring a custom TPU
machine.
This value must be present when scaleTier
is set to CUSTOM
and
workerCount
is greater than zero.
Corresponds to the JSON property workerType
1552 1553 1554 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1552 def worker_type @worker_type end |
Instance Method Details
#update!(**args) ⇒ Object
Update properties of this object
1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1559 def update!(**args) @args = args[:args] if args.key?(:args) @hyperparameters = args[:hyperparameters] if args.key?(:hyperparameters) @job_dir = args[:job_dir] if args.key?(:job_dir) @master_config = args[:master_config] if args.key?(:master_config) @master_type = args[:master_type] if args.key?(:master_type) @package_uris = args[:package_uris] if args.key?(:package_uris) @parameter_server_config = args[:parameter_server_config] if args.key?(:parameter_server_config) @parameter_server_count = args[:parameter_server_count] if args.key?(:parameter_server_count) @parameter_server_type = args[:parameter_server_type] if args.key?(:parameter_server_type) @python_module = args[:python_module] if args.key?(:python_module) @python_version = args[:python_version] if args.key?(:python_version) @region = args[:region] if args.key?(:region) @runtime_version = args[:runtime_version] if args.key?(:runtime_version) @scale_tier = args[:scale_tier] if args.key?(:scale_tier) @use_chief_in_tf_config = args[:use_chief_in_tf_config] if args.key?(:use_chief_in_tf_config) @worker_config = args[:worker_config] if args.key?(:worker_config) @worker_count = args[:worker_count] if args.key?(:worker_count) @worker_type = args[:worker_type] if args.key?(:worker_type) end |