Class: Google::Apis::BigqueryV2::TrainingOptions
- Inherits:
-
Object
- Object
- Google::Apis::BigqueryV2::TrainingOptions
- Includes:
- Core::Hashable, Core::JsonObjectSupport
- Defined in:
- generated/google/apis/bigquery_v2/classes.rb,
generated/google/apis/bigquery_v2/representations.rb,
generated/google/apis/bigquery_v2/representations.rb
Instance Attribute Summary collapse
-
#auto_arima ⇒ Boolean
(also: #auto_arima?)
Whether to enable auto ARIMA or not.
-
#auto_arima_max_order ⇒ Fixnum
The max value of non-seasonal p and q.
-
#batch_size ⇒ Fixnum
Batch size for dnn models.
-
#data_frequency ⇒ String
The data frequency of a time series.
-
#data_split_column ⇒ String
The column to split data with.
-
#data_split_eval_fraction ⇒ Float
The fraction of evaluation data over the whole input data.
-
#data_split_method ⇒ String
The data split type for training and evaluation, e.g.
-
#distance_type ⇒ String
Distance type for clustering models.
-
#dropout ⇒ Float
Dropout probability for dnn models.
-
#early_stop ⇒ Boolean
(also: #early_stop?)
Whether to stop early when the loss doesn't improve significantly any more ( compared to min_relative_progress).
-
#feedback_type ⇒ String
Feedback type that specifies which algorithm to run for matrix factorization.
-
#hidden_units ⇒ Array<Fixnum>
Hidden units for dnn models.
-
#holiday_region ⇒ String
The geographical region based on which the holidays are considered in time series modeling.
-
#horizon ⇒ Fixnum
The number of periods ahead that need to be forecasted.
-
#include_drift ⇒ Boolean
(also: #include_drift?)
Include drift when fitting an ARIMA model.
-
#initial_learn_rate ⇒ Float
Specifies the initial learning rate for the line search learn rate strategy.
-
#input_label_columns ⇒ Array<String>
Name of input label columns in training data.
-
#item_column ⇒ String
Item column specified for matrix factorization models.
-
#kmeans_initialization_column ⇒ String
The column used to provide the initial centroids for kmeans algorithm when kmeans_initialization_method is CUSTOM.
-
#kmeans_initialization_method ⇒ String
The method used to initialize the centroids for kmeans algorithm.
-
#l1_regularization ⇒ Float
L1 regularization coefficient.
-
#l2_regularization ⇒ Float
L2 regularization coefficient.
-
#label_class_weights ⇒ Hash<String,Float>
Weights associated with each label class, for rebalancing the training data.
-
#learn_rate ⇒ Float
Learning rate in training.
-
#learn_rate_strategy ⇒ String
The strategy to determine learn rate for the current iteration.
-
#loss_type ⇒ String
Type of loss function used during training run.
-
#max_iterations ⇒ Fixnum
The maximum number of iterations in training.
-
#max_tree_depth ⇒ Fixnum
Maximum depth of a tree for boosted tree models.
-
#min_relative_progress ⇒ Float
When early_stop is true, stops training when accuracy improvement is less than 'min_relative_progress'.
-
#min_split_loss ⇒ Float
Minimum split loss for boosted tree models.
-
#model_uri ⇒ String
[Beta] Google Cloud Storage URI from which the model was imported.
-
#non_seasonal_order ⇒ Google::Apis::BigqueryV2::ArimaOrder
Arima order, can be used for both non-seasonal and seasonal parts.
-
#num_clusters ⇒ Fixnum
Number of clusters for clustering models.
-
#num_factors ⇒ Fixnum
Num factors specified for matrix factorization models.
-
#optimization_strategy ⇒ String
Optimization strategy for training linear regression models.
-
#preserve_input_structs ⇒ Boolean
(also: #preserve_input_structs?)
Whether to preserve the input structs in output feature names.
-
#subsample ⇒ Float
Subsample fraction of the training data to grow tree to prevent overfitting for boosted tree models.
-
#time_series_data_column ⇒ String
Column to be designated as time series data for ARIMA model.
-
#time_series_id_column ⇒ String
The id column that will be used to indicate different time series to forecast in parallel.
-
#time_series_timestamp_column ⇒ String
Column to be designated as time series timestamp for ARIMA model.
-
#user_column ⇒ String
User column specified for matrix factorization models.
-
#wals_alpha ⇒ Float
Hyperparameter for matrix factoration when implicit feedback type is specified.
-
#warm_start ⇒ Boolean
(also: #warm_start?)
Whether to train a model from the last checkpoint.
Instance Method Summary collapse
-
#initialize(**args) ⇒ TrainingOptions
constructor
A new instance of TrainingOptions.
-
#update!(**args) ⇒ Object
Update properties of this object.
Constructor Details
#initialize(**args) ⇒ TrainingOptions
Returns a new instance of TrainingOptions.
6848 6849 6850 |
# File 'generated/google/apis/bigquery_v2/classes.rb', line 6848 def initialize(**args) update!(**args) end |
Instance Attribute Details
#auto_arima ⇒ Boolean Also known as: auto_arima?
Whether to enable auto ARIMA or not.
Corresponds to the JSON property autoArima
6609 6610 6611 |
# File 'generated/google/apis/bigquery_v2/classes.rb', line 6609 def auto_arima @auto_arima end |
#auto_arima_max_order ⇒ Fixnum
The max value of non-seasonal p and q.
Corresponds to the JSON property autoArimaMaxOrder
6615 6616 6617 |
# File 'generated/google/apis/bigquery_v2/classes.rb', line 6615 def auto_arima_max_order @auto_arima_max_order end |
#batch_size ⇒ Fixnum
Batch size for dnn models.
Corresponds to the JSON property batchSize
6620 6621 6622 |
# File 'generated/google/apis/bigquery_v2/classes.rb', line 6620 def batch_size @batch_size end |
#data_frequency ⇒ String
The data frequency of a time series.
Corresponds to the JSON property dataFrequency
6625 6626 6627 |
# File 'generated/google/apis/bigquery_v2/classes.rb', line 6625 def data_frequency @data_frequency end |
#data_split_column ⇒ String
The column to split data with. This column won't be used as a feature. 1. When
data_split_method is CUSTOM, the corresponding column should be boolean. The
rows with true value tag are eval data, and the false are training data. 2.
When data_split_method is SEQ, the first DATA_SPLIT_EVAL_FRACTION rows (from
smallest to largest) in the corresponding column are used as training data,
and the rest are eval data. It respects the order in Orderable data types:
https://cloud.google.com/bigquery/docs/reference/standard-sql/data-types#data-
type-properties
Corresponds to the JSON property dataSplitColumn
6637 6638 6639 |
# File 'generated/google/apis/bigquery_v2/classes.rb', line 6637 def data_split_column @data_split_column end |
#data_split_eval_fraction ⇒ Float
The fraction of evaluation data over the whole input data. The rest of data
will be used as training data. The format should be double. Accurate to two
decimal places. Default value is 0.2.
Corresponds to the JSON property dataSplitEvalFraction
6644 6645 6646 |
# File 'generated/google/apis/bigquery_v2/classes.rb', line 6644 def data_split_eval_fraction @data_split_eval_fraction end |
#data_split_method ⇒ String
The data split type for training and evaluation, e.g. RANDOM.
Corresponds to the JSON property dataSplitMethod
6649 6650 6651 |
# File 'generated/google/apis/bigquery_v2/classes.rb', line 6649 def data_split_method @data_split_method end |
#distance_type ⇒ String
Distance type for clustering models.
Corresponds to the JSON property distanceType
6654 6655 6656 |
# File 'generated/google/apis/bigquery_v2/classes.rb', line 6654 def distance_type @distance_type end |
#dropout ⇒ Float
Dropout probability for dnn models.
Corresponds to the JSON property dropout
6659 6660 6661 |
# File 'generated/google/apis/bigquery_v2/classes.rb', line 6659 def dropout @dropout end |
#early_stop ⇒ Boolean Also known as: early_stop?
Whether to stop early when the loss doesn't improve significantly any more (
compared to min_relative_progress). Used only for iterative training
algorithms.
Corresponds to the JSON property earlyStop
6666 6667 6668 |
# File 'generated/google/apis/bigquery_v2/classes.rb', line 6666 def early_stop @early_stop end |
#feedback_type ⇒ String
Feedback type that specifies which algorithm to run for matrix factorization.
Corresponds to the JSON property feedbackType
6672 6673 6674 |
# File 'generated/google/apis/bigquery_v2/classes.rb', line 6672 def feedback_type @feedback_type end |
#hidden_units ⇒ Array<Fixnum>
Hidden units for dnn models.
Corresponds to the JSON property hiddenUnits
6677 6678 6679 |
# File 'generated/google/apis/bigquery_v2/classes.rb', line 6677 def hidden_units @hidden_units end |
#holiday_region ⇒ String
The geographical region based on which the holidays are considered in time
series modeling. If a valid value is specified, then holiday effects modeling
is enabled.
Corresponds to the JSON property holidayRegion
6684 6685 6686 |
# File 'generated/google/apis/bigquery_v2/classes.rb', line 6684 def holiday_region @holiday_region end |
#horizon ⇒ Fixnum
The number of periods ahead that need to be forecasted.
Corresponds to the JSON property horizon
6689 6690 6691 |
# File 'generated/google/apis/bigquery_v2/classes.rb', line 6689 def horizon @horizon end |
#include_drift ⇒ Boolean Also known as: include_drift?
Include drift when fitting an ARIMA model.
Corresponds to the JSON property includeDrift
6694 6695 6696 |
# File 'generated/google/apis/bigquery_v2/classes.rb', line 6694 def include_drift @include_drift end |
#initial_learn_rate ⇒ Float
Specifies the initial learning rate for the line search learn rate strategy.
Corresponds to the JSON property initialLearnRate
6700 6701 6702 |
# File 'generated/google/apis/bigquery_v2/classes.rb', line 6700 def initial_learn_rate @initial_learn_rate end |
#input_label_columns ⇒ Array<String>
Name of input label columns in training data.
Corresponds to the JSON property inputLabelColumns
6705 6706 6707 |
# File 'generated/google/apis/bigquery_v2/classes.rb', line 6705 def input_label_columns @input_label_columns end |
#item_column ⇒ String
Item column specified for matrix factorization models.
Corresponds to the JSON property itemColumn
6710 6711 6712 |
# File 'generated/google/apis/bigquery_v2/classes.rb', line 6710 def item_column @item_column end |
#kmeans_initialization_column ⇒ String
The column used to provide the initial centroids for kmeans algorithm when
kmeans_initialization_method is CUSTOM.
Corresponds to the JSON property kmeansInitializationColumn
6716 6717 6718 |
# File 'generated/google/apis/bigquery_v2/classes.rb', line 6716 def kmeans_initialization_column @kmeans_initialization_column end |
#kmeans_initialization_method ⇒ String
The method used to initialize the centroids for kmeans algorithm.
Corresponds to the JSON property kmeansInitializationMethod
6721 6722 6723 |
# File 'generated/google/apis/bigquery_v2/classes.rb', line 6721 def kmeans_initialization_method @kmeans_initialization_method end |
#l1_regularization ⇒ Float
L1 regularization coefficient.
Corresponds to the JSON property l1Regularization
6726 6727 6728 |
# File 'generated/google/apis/bigquery_v2/classes.rb', line 6726 def l1_regularization @l1_regularization end |
#l2_regularization ⇒ Float
L2 regularization coefficient.
Corresponds to the JSON property l2Regularization
6731 6732 6733 |
# File 'generated/google/apis/bigquery_v2/classes.rb', line 6731 def l2_regularization @l2_regularization end |
#label_class_weights ⇒ Hash<String,Float>
Weights associated with each label class, for rebalancing the training data.
Only applicable for classification models.
Corresponds to the JSON property labelClassWeights
6737 6738 6739 |
# File 'generated/google/apis/bigquery_v2/classes.rb', line 6737 def label_class_weights @label_class_weights end |
#learn_rate ⇒ Float
Learning rate in training. Used only for iterative training algorithms.
Corresponds to the JSON property learnRate
6742 6743 6744 |
# File 'generated/google/apis/bigquery_v2/classes.rb', line 6742 def learn_rate @learn_rate end |
#learn_rate_strategy ⇒ String
The strategy to determine learn rate for the current iteration.
Corresponds to the JSON property learnRateStrategy
6747 6748 6749 |
# File 'generated/google/apis/bigquery_v2/classes.rb', line 6747 def learn_rate_strategy @learn_rate_strategy end |
#loss_type ⇒ String
Type of loss function used during training run.
Corresponds to the JSON property lossType
6752 6753 6754 |
# File 'generated/google/apis/bigquery_v2/classes.rb', line 6752 def loss_type @loss_type end |
#max_iterations ⇒ Fixnum
The maximum number of iterations in training. Used only for iterative training
algorithms.
Corresponds to the JSON property maxIterations
6758 6759 6760 |
# File 'generated/google/apis/bigquery_v2/classes.rb', line 6758 def max_iterations @max_iterations end |
#max_tree_depth ⇒ Fixnum
Maximum depth of a tree for boosted tree models.
Corresponds to the JSON property maxTreeDepth
6763 6764 6765 |
# File 'generated/google/apis/bigquery_v2/classes.rb', line 6763 def max_tree_depth @max_tree_depth end |
#min_relative_progress ⇒ Float
When early_stop is true, stops training when accuracy improvement is less than
'min_relative_progress'. Used only for iterative training algorithms.
Corresponds to the JSON property minRelativeProgress
6769 6770 6771 |
# File 'generated/google/apis/bigquery_v2/classes.rb', line 6769 def min_relative_progress @min_relative_progress end |
#min_split_loss ⇒ Float
Minimum split loss for boosted tree models.
Corresponds to the JSON property minSplitLoss
6774 6775 6776 |
# File 'generated/google/apis/bigquery_v2/classes.rb', line 6774 def min_split_loss @min_split_loss end |
#model_uri ⇒ String
[Beta] Google Cloud Storage URI from which the model was imported. Only
applicable for imported models.
Corresponds to the JSON property modelUri
6780 6781 6782 |
# File 'generated/google/apis/bigquery_v2/classes.rb', line 6780 def model_uri @model_uri end |
#non_seasonal_order ⇒ Google::Apis::BigqueryV2::ArimaOrder
Arima order, can be used for both non-seasonal and seasonal parts.
Corresponds to the JSON property nonSeasonalOrder
6785 6786 6787 |
# File 'generated/google/apis/bigquery_v2/classes.rb', line 6785 def non_seasonal_order @non_seasonal_order end |
#num_clusters ⇒ Fixnum
Number of clusters for clustering models.
Corresponds to the JSON property numClusters
6790 6791 6792 |
# File 'generated/google/apis/bigquery_v2/classes.rb', line 6790 def num_clusters @num_clusters end |
#num_factors ⇒ Fixnum
Num factors specified for matrix factorization models.
Corresponds to the JSON property numFactors
6795 6796 6797 |
# File 'generated/google/apis/bigquery_v2/classes.rb', line 6795 def num_factors @num_factors end |
#optimization_strategy ⇒ String
Optimization strategy for training linear regression models.
Corresponds to the JSON property optimizationStrategy
6800 6801 6802 |
# File 'generated/google/apis/bigquery_v2/classes.rb', line 6800 def optimization_strategy @optimization_strategy end |
#preserve_input_structs ⇒ Boolean Also known as: preserve_input_structs?
Whether to preserve the input structs in output feature names. Suppose there
is a struct A with field b. When false (default), the output feature name is
A_b. When true, the output feature name is A.b.
Corresponds to the JSON property preserveInputStructs
6807 6808 6809 |
# File 'generated/google/apis/bigquery_v2/classes.rb', line 6807 def preserve_input_structs @preserve_input_structs end |
#subsample ⇒ Float
Subsample fraction of the training data to grow tree to prevent overfitting
for boosted tree models.
Corresponds to the JSON property subsample
6814 6815 6816 |
# File 'generated/google/apis/bigquery_v2/classes.rb', line 6814 def subsample @subsample end |
#time_series_data_column ⇒ String
Column to be designated as time series data for ARIMA model.
Corresponds to the JSON property timeSeriesDataColumn
6819 6820 6821 |
# File 'generated/google/apis/bigquery_v2/classes.rb', line 6819 def time_series_data_column @time_series_data_column end |
#time_series_id_column ⇒ String
The id column that will be used to indicate different time series to forecast
in parallel.
Corresponds to the JSON property timeSeriesIdColumn
6825 6826 6827 |
# File 'generated/google/apis/bigquery_v2/classes.rb', line 6825 def time_series_id_column @time_series_id_column end |
#time_series_timestamp_column ⇒ String
Column to be designated as time series timestamp for ARIMA model.
Corresponds to the JSON property timeSeriesTimestampColumn
6830 6831 6832 |
# File 'generated/google/apis/bigquery_v2/classes.rb', line 6830 def @time_series_timestamp_column end |
#user_column ⇒ String
User column specified for matrix factorization models.
Corresponds to the JSON property userColumn
6835 6836 6837 |
# File 'generated/google/apis/bigquery_v2/classes.rb', line 6835 def user_column @user_column end |
#wals_alpha ⇒ Float
Hyperparameter for matrix factoration when implicit feedback type is specified.
Corresponds to the JSON property walsAlpha
6840 6841 6842 |
# File 'generated/google/apis/bigquery_v2/classes.rb', line 6840 def wals_alpha @wals_alpha end |
#warm_start ⇒ Boolean Also known as: warm_start?
Whether to train a model from the last checkpoint.
Corresponds to the JSON property warmStart
6845 6846 6847 |
# File 'generated/google/apis/bigquery_v2/classes.rb', line 6845 def warm_start @warm_start end |
Instance Method Details
#update!(**args) ⇒ Object
Update properties of this object
6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 |
# File 'generated/google/apis/bigquery_v2/classes.rb', line 6853 def update!(**args) @auto_arima = args[:auto_arima] if args.key?(:auto_arima) @auto_arima_max_order = args[:auto_arima_max_order] if args.key?(:auto_arima_max_order) @batch_size = args[:batch_size] if args.key?(:batch_size) @data_frequency = args[:data_frequency] if args.key?(:data_frequency) @data_split_column = args[:data_split_column] if args.key?(:data_split_column) @data_split_eval_fraction = args[:data_split_eval_fraction] if args.key?(:data_split_eval_fraction) @data_split_method = args[:data_split_method] if args.key?(:data_split_method) @distance_type = args[:distance_type] if args.key?(:distance_type) @dropout = args[:dropout] if args.key?(:dropout) @early_stop = args[:early_stop] if args.key?(:early_stop) @feedback_type = args[:feedback_type] if args.key?(:feedback_type) @hidden_units = args[:hidden_units] if args.key?(:hidden_units) @holiday_region = args[:holiday_region] if args.key?(:holiday_region) @horizon = args[:horizon] if args.key?(:horizon) @include_drift = args[:include_drift] if args.key?(:include_drift) @initial_learn_rate = args[:initial_learn_rate] if args.key?(:initial_learn_rate) @input_label_columns = args[:input_label_columns] if args.key?(:input_label_columns) @item_column = args[:item_column] if args.key?(:item_column) @kmeans_initialization_column = args[:kmeans_initialization_column] if args.key?(:kmeans_initialization_column) @kmeans_initialization_method = args[:kmeans_initialization_method] if args.key?(:kmeans_initialization_method) @l1_regularization = args[:l1_regularization] if args.key?(:l1_regularization) @l2_regularization = args[:l2_regularization] if args.key?(:l2_regularization) @label_class_weights = args[:label_class_weights] if args.key?(:label_class_weights) @learn_rate = args[:learn_rate] if args.key?(:learn_rate) @learn_rate_strategy = args[:learn_rate_strategy] if args.key?(:learn_rate_strategy) @loss_type = args[:loss_type] if args.key?(:loss_type) @max_iterations = args[:max_iterations] if args.key?(:max_iterations) @max_tree_depth = args[:max_tree_depth] if args.key?(:max_tree_depth) @min_relative_progress = args[:min_relative_progress] if args.key?(:min_relative_progress) @min_split_loss = args[:min_split_loss] if args.key?(:min_split_loss) @model_uri = args[:model_uri] if args.key?(:model_uri) @non_seasonal_order = args[:non_seasonal_order] if args.key?(:non_seasonal_order) @num_clusters = args[:num_clusters] if args.key?(:num_clusters) @num_factors = args[:num_factors] if args.key?(:num_factors) @optimization_strategy = args[:optimization_strategy] if args.key?(:optimization_strategy) @preserve_input_structs = args[:preserve_input_structs] if args.key?(:preserve_input_structs) @subsample = args[:subsample] if args.key?(:subsample) @time_series_data_column = args[:time_series_data_column] if args.key?(:time_series_data_column) @time_series_id_column = args[:time_series_id_column] if args.key?(:time_series_id_column) @time_series_timestamp_column = args[:time_series_timestamp_column] if args.key?(:time_series_timestamp_column) @user_column = args[:user_column] if args.key?(:user_column) @wals_alpha = args[:wals_alpha] if args.key?(:wals_alpha) @warm_start = args[:warm_start] if args.key?(:warm_start) end |