Class: Google::Apis::BigqueryV2::TrainingOptions

Inherits:
Object
  • Object
show all
Includes:
Core::Hashable, Core::JsonObjectSupport
Defined in:
generated/google/apis/bigquery_v2/classes.rb,
generated/google/apis/bigquery_v2/representations.rb,
generated/google/apis/bigquery_v2/representations.rb

Instance Attribute Summary collapse

Instance Method Summary collapse

Constructor Details

#initialize(**args) ⇒ TrainingOptions

Returns a new instance of TrainingOptions.



6848
6849
6850
# File 'generated/google/apis/bigquery_v2/classes.rb', line 6848

def initialize(**args)
   update!(**args)
end

Instance Attribute Details

#auto_arimaBoolean Also known as: auto_arima?

Whether to enable auto ARIMA or not. Corresponds to the JSON property autoArima

Returns:

  • (Boolean)


6609
6610
6611
# File 'generated/google/apis/bigquery_v2/classes.rb', line 6609

def auto_arima
  @auto_arima
end

#auto_arima_max_orderFixnum

The max value of non-seasonal p and q. Corresponds to the JSON property autoArimaMaxOrder

Returns:

  • (Fixnum)


6615
6616
6617
# File 'generated/google/apis/bigquery_v2/classes.rb', line 6615

def auto_arima_max_order
  @auto_arima_max_order
end

#batch_sizeFixnum

Batch size for dnn models. Corresponds to the JSON property batchSize

Returns:

  • (Fixnum)


6620
6621
6622
# File 'generated/google/apis/bigquery_v2/classes.rb', line 6620

def batch_size
  @batch_size
end

#data_frequencyString

The data frequency of a time series. Corresponds to the JSON property dataFrequency

Returns:

  • (String)


6625
6626
6627
# File 'generated/google/apis/bigquery_v2/classes.rb', line 6625

def data_frequency
  @data_frequency
end

#data_split_columnString

The column to split data with. This column won't be used as a feature. 1. When data_split_method is CUSTOM, the corresponding column should be boolean. The rows with true value tag are eval data, and the false are training data. 2. When data_split_method is SEQ, the first DATA_SPLIT_EVAL_FRACTION rows (from smallest to largest) in the corresponding column are used as training data, and the rest are eval data. It respects the order in Orderable data types: https://cloud.google.com/bigquery/docs/reference/standard-sql/data-types#data- type-properties Corresponds to the JSON property dataSplitColumn

Returns:

  • (String)


6637
6638
6639
# File 'generated/google/apis/bigquery_v2/classes.rb', line 6637

def data_split_column
  @data_split_column
end

#data_split_eval_fractionFloat

The fraction of evaluation data over the whole input data. The rest of data will be used as training data. The format should be double. Accurate to two decimal places. Default value is 0.2. Corresponds to the JSON property dataSplitEvalFraction

Returns:

  • (Float)


6644
6645
6646
# File 'generated/google/apis/bigquery_v2/classes.rb', line 6644

def data_split_eval_fraction
  @data_split_eval_fraction
end

#data_split_methodString

The data split type for training and evaluation, e.g. RANDOM. Corresponds to the JSON property dataSplitMethod

Returns:

  • (String)


6649
6650
6651
# File 'generated/google/apis/bigquery_v2/classes.rb', line 6649

def data_split_method
  @data_split_method
end

#distance_typeString

Distance type for clustering models. Corresponds to the JSON property distanceType

Returns:

  • (String)


6654
6655
6656
# File 'generated/google/apis/bigquery_v2/classes.rb', line 6654

def distance_type
  @distance_type
end

#dropoutFloat

Dropout probability for dnn models. Corresponds to the JSON property dropout

Returns:

  • (Float)


6659
6660
6661
# File 'generated/google/apis/bigquery_v2/classes.rb', line 6659

def dropout
  @dropout
end

#early_stopBoolean Also known as: early_stop?

Whether to stop early when the loss doesn't improve significantly any more ( compared to min_relative_progress). Used only for iterative training algorithms. Corresponds to the JSON property earlyStop

Returns:

  • (Boolean)


6666
6667
6668
# File 'generated/google/apis/bigquery_v2/classes.rb', line 6666

def early_stop
  @early_stop
end

#feedback_typeString

Feedback type that specifies which algorithm to run for matrix factorization. Corresponds to the JSON property feedbackType

Returns:

  • (String)


6672
6673
6674
# File 'generated/google/apis/bigquery_v2/classes.rb', line 6672

def feedback_type
  @feedback_type
end

#hidden_unitsArray<Fixnum>

Hidden units for dnn models. Corresponds to the JSON property hiddenUnits

Returns:

  • (Array<Fixnum>)


6677
6678
6679
# File 'generated/google/apis/bigquery_v2/classes.rb', line 6677

def hidden_units
  @hidden_units
end

#holiday_regionString

The geographical region based on which the holidays are considered in time series modeling. If a valid value is specified, then holiday effects modeling is enabled. Corresponds to the JSON property holidayRegion

Returns:

  • (String)


6684
6685
6686
# File 'generated/google/apis/bigquery_v2/classes.rb', line 6684

def holiday_region
  @holiday_region
end

#horizonFixnum

The number of periods ahead that need to be forecasted. Corresponds to the JSON property horizon

Returns:

  • (Fixnum)


6689
6690
6691
# File 'generated/google/apis/bigquery_v2/classes.rb', line 6689

def horizon
  @horizon
end

#include_driftBoolean Also known as: include_drift?

Include drift when fitting an ARIMA model. Corresponds to the JSON property includeDrift

Returns:

  • (Boolean)


6694
6695
6696
# File 'generated/google/apis/bigquery_v2/classes.rb', line 6694

def include_drift
  @include_drift
end

#initial_learn_rateFloat

Specifies the initial learning rate for the line search learn rate strategy. Corresponds to the JSON property initialLearnRate

Returns:

  • (Float)


6700
6701
6702
# File 'generated/google/apis/bigquery_v2/classes.rb', line 6700

def initial_learn_rate
  @initial_learn_rate
end

#input_label_columnsArray<String>

Name of input label columns in training data. Corresponds to the JSON property inputLabelColumns

Returns:

  • (Array<String>)


6705
6706
6707
# File 'generated/google/apis/bigquery_v2/classes.rb', line 6705

def input_label_columns
  @input_label_columns
end

#item_columnString

Item column specified for matrix factorization models. Corresponds to the JSON property itemColumn

Returns:

  • (String)


6710
6711
6712
# File 'generated/google/apis/bigquery_v2/classes.rb', line 6710

def item_column
  @item_column
end

#kmeans_initialization_columnString

The column used to provide the initial centroids for kmeans algorithm when kmeans_initialization_method is CUSTOM. Corresponds to the JSON property kmeansInitializationColumn

Returns:

  • (String)


6716
6717
6718
# File 'generated/google/apis/bigquery_v2/classes.rb', line 6716

def kmeans_initialization_column
  @kmeans_initialization_column
end

#kmeans_initialization_methodString

The method used to initialize the centroids for kmeans algorithm. Corresponds to the JSON property kmeansInitializationMethod

Returns:

  • (String)


6721
6722
6723
# File 'generated/google/apis/bigquery_v2/classes.rb', line 6721

def kmeans_initialization_method
  @kmeans_initialization_method
end

#l1_regularizationFloat

L1 regularization coefficient. Corresponds to the JSON property l1Regularization

Returns:

  • (Float)


6726
6727
6728
# File 'generated/google/apis/bigquery_v2/classes.rb', line 6726

def l1_regularization
  @l1_regularization
end

#l2_regularizationFloat

L2 regularization coefficient. Corresponds to the JSON property l2Regularization

Returns:

  • (Float)


6731
6732
6733
# File 'generated/google/apis/bigquery_v2/classes.rb', line 6731

def l2_regularization
  @l2_regularization
end

#label_class_weightsHash<String,Float>

Weights associated with each label class, for rebalancing the training data. Only applicable for classification models. Corresponds to the JSON property labelClassWeights

Returns:

  • (Hash<String,Float>)


6737
6738
6739
# File 'generated/google/apis/bigquery_v2/classes.rb', line 6737

def label_class_weights
  @label_class_weights
end

#learn_rateFloat

Learning rate in training. Used only for iterative training algorithms. Corresponds to the JSON property learnRate

Returns:

  • (Float)


6742
6743
6744
# File 'generated/google/apis/bigquery_v2/classes.rb', line 6742

def learn_rate
  @learn_rate
end

#learn_rate_strategyString

The strategy to determine learn rate for the current iteration. Corresponds to the JSON property learnRateStrategy

Returns:

  • (String)


6747
6748
6749
# File 'generated/google/apis/bigquery_v2/classes.rb', line 6747

def learn_rate_strategy
  @learn_rate_strategy
end

#loss_typeString

Type of loss function used during training run. Corresponds to the JSON property lossType

Returns:

  • (String)


6752
6753
6754
# File 'generated/google/apis/bigquery_v2/classes.rb', line 6752

def loss_type
  @loss_type
end

#max_iterationsFixnum

The maximum number of iterations in training. Used only for iterative training algorithms. Corresponds to the JSON property maxIterations

Returns:

  • (Fixnum)


6758
6759
6760
# File 'generated/google/apis/bigquery_v2/classes.rb', line 6758

def max_iterations
  @max_iterations
end

#max_tree_depthFixnum

Maximum depth of a tree for boosted tree models. Corresponds to the JSON property maxTreeDepth

Returns:

  • (Fixnum)


6763
6764
6765
# File 'generated/google/apis/bigquery_v2/classes.rb', line 6763

def max_tree_depth
  @max_tree_depth
end

#min_relative_progressFloat

When early_stop is true, stops training when accuracy improvement is less than 'min_relative_progress'. Used only for iterative training algorithms. Corresponds to the JSON property minRelativeProgress

Returns:

  • (Float)


6769
6770
6771
# File 'generated/google/apis/bigquery_v2/classes.rb', line 6769

def min_relative_progress
  @min_relative_progress
end

#min_split_lossFloat

Minimum split loss for boosted tree models. Corresponds to the JSON property minSplitLoss

Returns:

  • (Float)


6774
6775
6776
# File 'generated/google/apis/bigquery_v2/classes.rb', line 6774

def min_split_loss
  @min_split_loss
end

#model_uriString

[Beta] Google Cloud Storage URI from which the model was imported. Only applicable for imported models. Corresponds to the JSON property modelUri

Returns:

  • (String)


6780
6781
6782
# File 'generated/google/apis/bigquery_v2/classes.rb', line 6780

def model_uri
  @model_uri
end

#non_seasonal_orderGoogle::Apis::BigqueryV2::ArimaOrder

Arima order, can be used for both non-seasonal and seasonal parts. Corresponds to the JSON property nonSeasonalOrder



6785
6786
6787
# File 'generated/google/apis/bigquery_v2/classes.rb', line 6785

def non_seasonal_order
  @non_seasonal_order
end

#num_clustersFixnum

Number of clusters for clustering models. Corresponds to the JSON property numClusters

Returns:

  • (Fixnum)


6790
6791
6792
# File 'generated/google/apis/bigquery_v2/classes.rb', line 6790

def num_clusters
  @num_clusters
end

#num_factorsFixnum

Num factors specified for matrix factorization models. Corresponds to the JSON property numFactors

Returns:

  • (Fixnum)


6795
6796
6797
# File 'generated/google/apis/bigquery_v2/classes.rb', line 6795

def num_factors
  @num_factors
end

#optimization_strategyString

Optimization strategy for training linear regression models. Corresponds to the JSON property optimizationStrategy

Returns:

  • (String)


6800
6801
6802
# File 'generated/google/apis/bigquery_v2/classes.rb', line 6800

def optimization_strategy
  @optimization_strategy
end

#preserve_input_structsBoolean Also known as: preserve_input_structs?

Whether to preserve the input structs in output feature names. Suppose there is a struct A with field b. When false (default), the output feature name is A_b. When true, the output feature name is A.b. Corresponds to the JSON property preserveInputStructs

Returns:

  • (Boolean)


6807
6808
6809
# File 'generated/google/apis/bigquery_v2/classes.rb', line 6807

def preserve_input_structs
  @preserve_input_structs
end

#subsampleFloat

Subsample fraction of the training data to grow tree to prevent overfitting for boosted tree models. Corresponds to the JSON property subsample

Returns:

  • (Float)


6814
6815
6816
# File 'generated/google/apis/bigquery_v2/classes.rb', line 6814

def subsample
  @subsample
end

#time_series_data_columnString

Column to be designated as time series data for ARIMA model. Corresponds to the JSON property timeSeriesDataColumn

Returns:

  • (String)


6819
6820
6821
# File 'generated/google/apis/bigquery_v2/classes.rb', line 6819

def time_series_data_column
  @time_series_data_column
end

#time_series_id_columnString

The id column that will be used to indicate different time series to forecast in parallel. Corresponds to the JSON property timeSeriesIdColumn

Returns:

  • (String)


6825
6826
6827
# File 'generated/google/apis/bigquery_v2/classes.rb', line 6825

def time_series_id_column
  @time_series_id_column
end

#time_series_timestamp_columnString

Column to be designated as time series timestamp for ARIMA model. Corresponds to the JSON property timeSeriesTimestampColumn

Returns:

  • (String)


6830
6831
6832
# File 'generated/google/apis/bigquery_v2/classes.rb', line 6830

def time_series_timestamp_column
  @time_series_timestamp_column
end

#user_columnString

User column specified for matrix factorization models. Corresponds to the JSON property userColumn

Returns:

  • (String)


6835
6836
6837
# File 'generated/google/apis/bigquery_v2/classes.rb', line 6835

def user_column
  @user_column
end

#wals_alphaFloat

Hyperparameter for matrix factoration when implicit feedback type is specified. Corresponds to the JSON property walsAlpha

Returns:

  • (Float)


6840
6841
6842
# File 'generated/google/apis/bigquery_v2/classes.rb', line 6840

def wals_alpha
  @wals_alpha
end

#warm_startBoolean Also known as: warm_start?

Whether to train a model from the last checkpoint. Corresponds to the JSON property warmStart

Returns:

  • (Boolean)


6845
6846
6847
# File 'generated/google/apis/bigquery_v2/classes.rb', line 6845

def warm_start
  @warm_start
end

Instance Method Details

#update!(**args) ⇒ Object

Update properties of this object



6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
# File 'generated/google/apis/bigquery_v2/classes.rb', line 6853

def update!(**args)
  @auto_arima = args[:auto_arima] if args.key?(:auto_arima)
  @auto_arima_max_order = args[:auto_arima_max_order] if args.key?(:auto_arima_max_order)
  @batch_size = args[:batch_size] if args.key?(:batch_size)
  @data_frequency = args[:data_frequency] if args.key?(:data_frequency)
  @data_split_column = args[:data_split_column] if args.key?(:data_split_column)
  @data_split_eval_fraction = args[:data_split_eval_fraction] if args.key?(:data_split_eval_fraction)
  @data_split_method = args[:data_split_method] if args.key?(:data_split_method)
  @distance_type = args[:distance_type] if args.key?(:distance_type)
  @dropout = args[:dropout] if args.key?(:dropout)
  @early_stop = args[:early_stop] if args.key?(:early_stop)
  @feedback_type = args[:feedback_type] if args.key?(:feedback_type)
  @hidden_units = args[:hidden_units] if args.key?(:hidden_units)
  @holiday_region = args[:holiday_region] if args.key?(:holiday_region)
  @horizon = args[:horizon] if args.key?(:horizon)
  @include_drift = args[:include_drift] if args.key?(:include_drift)
  @initial_learn_rate = args[:initial_learn_rate] if args.key?(:initial_learn_rate)
  @input_label_columns = args[:input_label_columns] if args.key?(:input_label_columns)
  @item_column = args[:item_column] if args.key?(:item_column)
  @kmeans_initialization_column = args[:kmeans_initialization_column] if args.key?(:kmeans_initialization_column)
  @kmeans_initialization_method = args[:kmeans_initialization_method] if args.key?(:kmeans_initialization_method)
  @l1_regularization = args[:l1_regularization] if args.key?(:l1_regularization)
  @l2_regularization = args[:l2_regularization] if args.key?(:l2_regularization)
  @label_class_weights = args[:label_class_weights] if args.key?(:label_class_weights)
  @learn_rate = args[:learn_rate] if args.key?(:learn_rate)
  @learn_rate_strategy = args[:learn_rate_strategy] if args.key?(:learn_rate_strategy)
  @loss_type = args[:loss_type] if args.key?(:loss_type)
  @max_iterations = args[:max_iterations] if args.key?(:max_iterations)
  @max_tree_depth = args[:max_tree_depth] if args.key?(:max_tree_depth)
  @min_relative_progress = args[:min_relative_progress] if args.key?(:min_relative_progress)
  @min_split_loss = args[:min_split_loss] if args.key?(:min_split_loss)
  @model_uri = args[:model_uri] if args.key?(:model_uri)
  @non_seasonal_order = args[:non_seasonal_order] if args.key?(:non_seasonal_order)
  @num_clusters = args[:num_clusters] if args.key?(:num_clusters)
  @num_factors = args[:num_factors] if args.key?(:num_factors)
  @optimization_strategy = args[:optimization_strategy] if args.key?(:optimization_strategy)
  @preserve_input_structs = args[:preserve_input_structs] if args.key?(:preserve_input_structs)
  @subsample = args[:subsample] if args.key?(:subsample)
  @time_series_data_column = args[:time_series_data_column] if args.key?(:time_series_data_column)
  @time_series_id_column = args[:time_series_id_column] if args.key?(:time_series_id_column)
  @time_series_timestamp_column = args[:time_series_timestamp_column] if args.key?(:time_series_timestamp_column)
  @user_column = args[:user_column] if args.key?(:user_column)
  @wals_alpha = args[:wals_alpha] if args.key?(:wals_alpha)
  @warm_start = args[:warm_start] if args.key?(:warm_start)
end