Class: Google::Apis::MlV1::GoogleCloudMlV1AutoScaling
- Inherits:
-
Object
- Object
- Google::Apis::MlV1::GoogleCloudMlV1AutoScaling
- Includes:
- Core::Hashable, Core::JsonObjectSupport
- Defined in:
- generated/google/apis/ml_v1/classes.rb,
generated/google/apis/ml_v1/representations.rb,
generated/google/apis/ml_v1/representations.rb
Overview
Options for automatically scaling a model.
Instance Attribute Summary collapse
-
#max_nodes ⇒ Fixnum
The maximum number of nodes to scale this model under load.
-
#metrics ⇒ Array<Google::Apis::MlV1::GoogleCloudMlV1MetricSpec>
MetricSpec contains the specifications to use to calculate the desired nodes count.
-
#min_nodes ⇒ Fixnum
Optional.
Instance Method Summary collapse
-
#initialize(**args) ⇒ GoogleCloudMlV1AutoScaling
constructor
A new instance of GoogleCloudMlV1AutoScaling.
-
#update!(**args) ⇒ Object
Update properties of this object.
Constructor Details
#initialize(**args) ⇒ GoogleCloudMlV1AutoScaling
Returns a new instance of GoogleCloudMlV1AutoScaling.
557 558 559 |
# File 'generated/google/apis/ml_v1/classes.rb', line 557 def initialize(**args) update!(**args) end |
Instance Attribute Details
#max_nodes ⇒ Fixnum
The maximum number of nodes to scale this model under load. The actual value
will depend on resource quota and availability.
Corresponds to the JSON property maxNodes
521 522 523 |
# File 'generated/google/apis/ml_v1/classes.rb', line 521 def max_nodes @max_nodes end |
#metrics ⇒ Array<Google::Apis::MlV1::GoogleCloudMlV1MetricSpec>
MetricSpec contains the specifications to use to calculate the desired nodes
count.
Corresponds to the JSON property metrics
527 528 529 |
# File 'generated/google/apis/ml_v1/classes.rb', line 527 def metrics @metrics end |
#min_nodes ⇒ Fixnum
Optional. The minimum number of nodes to allocate for this model. These nodes
are always up, starting from the time the model is deployed. Therefore, the
cost of operating this model will be at least rate
* min_nodes
* number of
hours since last billing cycle, where rate
is the cost per node-hour as
documented in the pricing guide, even if no
predictions are performed. There is additional cost for each prediction
performed. Unlike manual scaling, if the load gets too heavy for the nodes
that are up, the service will automatically add nodes to handle the increased
load as well as scale back as traffic drops, always maintaining at least
min_nodes
. You will be charged for the time in which additional nodes are
used. If min_nodes
is not specified and AutoScaling is used with a legacy (
MLS1) machine type,
min_nodes
defaults to 0, in which case, when traffic to a model stops (and
after a cool-down period), nodes will be shut down and no charges will be
incurred until traffic to the model resumes. If min_nodes
is not specified
and AutoScaling is used with a Compute Engine (N1) machine type, min_nodes
defaults to 1. min_nodes
must be at least 1 for use with a Compute Engine machine type. Note that you
cannot use AutoScaling if your version uses GPUs. Instead, you must use ManualScaling. You can set
min_nodes
when creating the model version, and you can also update min_nodes
for an existing version: update_body.json: 'autoScaling':
'minNodes': 5
HTTP request: PATCH https://ml.googleapis.com/v1/`name=projects/*/models/*/
versions/*?update_mask=autoScaling.minNodes -d @./update_body.json
Corresponds to the JSON property
minNodes`
555 556 557 |
# File 'generated/google/apis/ml_v1/classes.rb', line 555 def min_nodes @min_nodes end |
Instance Method Details
#update!(**args) ⇒ Object
Update properties of this object
562 563 564 565 566 |
# File 'generated/google/apis/ml_v1/classes.rb', line 562 def update!(**args) @max_nodes = args[:max_nodes] if args.key?(:max_nodes) @metrics = args[:metrics] if args.key?(:metrics) @min_nodes = args[:min_nodes] if args.key?(:min_nodes) end |