Class: Google::Apis::MlV1::GoogleCloudMlV1HyperparameterSpec
- Inherits:
-
Object
- Object
- Google::Apis::MlV1::GoogleCloudMlV1HyperparameterSpec
- Includes:
- Core::Hashable, Core::JsonObjectSupport
- Defined in:
- generated/google/apis/ml_v1/classes.rb,
generated/google/apis/ml_v1/representations.rb,
generated/google/apis/ml_v1/representations.rb
Overview
Represents a set of hyperparameters to optimize.
Instance Attribute Summary collapse
-
#algorithm ⇒ String
Optional.
-
#enable_trial_early_stopping ⇒ Boolean
(also: #enable_trial_early_stopping?)
Optional.
-
#goal ⇒ String
Required.
-
#hyperparameter_metric_tag ⇒ String
Optional.
-
#max_failed_trials ⇒ Fixnum
Optional.
-
#max_parallel_trials ⇒ Fixnum
Optional.
-
#max_trials ⇒ Fixnum
Optional.
-
#params ⇒ Array<Google::Apis::MlV1::GoogleCloudMlV1ParameterSpec>
Required.
-
#resume_previous_job_id ⇒ String
Optional.
Instance Method Summary collapse
-
#initialize(**args) ⇒ GoogleCloudMlV1HyperparameterSpec
constructor
A new instance of GoogleCloudMlV1HyperparameterSpec.
-
#update!(**args) ⇒ Object
Update properties of this object.
Constructor Details
#initialize(**args) ⇒ GoogleCloudMlV1HyperparameterSpec
Returns a new instance of GoogleCloudMlV1HyperparameterSpec.
1300 1301 1302 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1300 def initialize(**args) update!(**args) end |
Instance Attribute Details
#algorithm ⇒ String
Optional. The search algorithm specified for the hyperparameter tuning job.
Uses the default AI Platform hyperparameter tuning algorithm if unspecified.
Corresponds to the JSON property algorithm
1239 1240 1241 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1239 def algorithm @algorithm end |
#enable_trial_early_stopping ⇒ Boolean Also known as: enable_trial_early_stopping?
Optional. Indicates if the hyperparameter tuning job enables auto trial early
stopping.
Corresponds to the JSON property enableTrialEarlyStopping
1245 1246 1247 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1245 def enable_trial_early_stopping @enable_trial_early_stopping end |
#goal ⇒ String
Required. The type of goal to use for tuning. Available types are MAXIMIZE
and MINIMIZE
. Defaults to MAXIMIZE
.
Corresponds to the JSON property goal
1252 1253 1254 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1252 def goal @goal end |
#hyperparameter_metric_tag ⇒ String
Optional. The TensorFlow summary tag name to use for optimizing trials. For
current versions of TensorFlow, this tag name should exactly match what is
shown in TensorBoard, including all scopes. For versions of TensorFlow prior
to 0.12, this should be only the tag passed to tf.Summary. By default, "
training/hptuning/metric" will be used.
Corresponds to the JSON property hyperparameterMetricTag
1261 1262 1263 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1261 def hyperparameter_metric_tag @hyperparameter_metric_tag end |
#max_failed_trials ⇒ Fixnum
Optional. The number of failed trials that need to be seen before failing the
hyperparameter tuning job. You can specify this field to override the default
failing criteria for AI Platform hyperparameter tuning jobs. Defaults to zero,
which means the service decides when a hyperparameter job should fail.
Corresponds to the JSON property maxFailedTrials
1269 1270 1271 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1269 def max_failed_trials @max_failed_trials end |
#max_parallel_trials ⇒ Fixnum
Optional. The number of training trials to run concurrently. You can reduce
the time it takes to perform hyperparameter tuning by adding trials in
parallel. However, each trail only benefits from the information gained in
completed trials. That means that a trial does not get access to the results
of trials running at the same time, which could reduce the quality of the
overall optimization. Each trial will use the same scale tier and machine
types. Defaults to one.
Corresponds to the JSON property maxParallelTrials
1280 1281 1282 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1280 def max_parallel_trials @max_parallel_trials end |
#max_trials ⇒ Fixnum
Optional. How many training trials should be attempted to optimize the
specified hyperparameters. Defaults to one.
Corresponds to the JSON property maxTrials
1286 1287 1288 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1286 def max_trials @max_trials end |
#params ⇒ Array<Google::Apis::MlV1::GoogleCloudMlV1ParameterSpec>
Required. The set of parameters to tune.
Corresponds to the JSON property params
1291 1292 1293 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1291 def params @params end |
#resume_previous_job_id ⇒ String
Optional. The prior hyperparameter tuning job id that users hope to continue
with. The job id will be used to find the corresponding vizier study guid and
resume the study.
Corresponds to the JSON property resumePreviousJobId
1298 1299 1300 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1298 def resume_previous_job_id @resume_previous_job_id end |
Instance Method Details
#update!(**args) ⇒ Object
Update properties of this object
1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1305 def update!(**args) @algorithm = args[:algorithm] if args.key?(:algorithm) @enable_trial_early_stopping = args[:enable_trial_early_stopping] if args.key?(:enable_trial_early_stopping) @goal = args[:goal] if args.key?(:goal) @hyperparameter_metric_tag = args[:hyperparameter_metric_tag] if args.key?(:hyperparameter_metric_tag) @max_failed_trials = args[:max_failed_trials] if args.key?(:max_failed_trials) @max_parallel_trials = args[:max_parallel_trials] if args.key?(:max_parallel_trials) @max_trials = args[:max_trials] if args.key?(:max_trials) @params = args[:params] if args.key?(:params) @resume_previous_job_id = args[:resume_previous_job_id] if args.key?(:resume_previous_job_id) end |