Class: Google::Apis::MlV1::GoogleCloudMlV1TrainingInput
- Inherits:
-
Object
- Object
- Google::Apis::MlV1::GoogleCloudMlV1TrainingInput
- Includes:
- Core::Hashable, Core::JsonObjectSupport
- Defined in:
- generated/google/apis/ml_v1/classes.rb,
generated/google/apis/ml_v1/representations.rb,
generated/google/apis/ml_v1/representations.rb
Overview
Represents input parameters for a training job.
Instance Attribute Summary collapse
-
#args ⇒ Array<String>
Optional.
-
#hyperparameters ⇒ Google::Apis::MlV1::GoogleCloudMlV1HyperparameterSpec
Represents a set of hyperparameters to optimize.
-
#job_dir ⇒ String
Optional.
-
#master_type ⇒ String
Optional.
-
#package_uris ⇒ Array<String>
Required.
-
#parameter_server_count ⇒ String
Optional.
-
#parameter_server_type ⇒ String
Optional.
-
#python_module ⇒ String
Required.
-
#region ⇒ String
Required.
-
#runtime_version ⇒ String
Optional.
-
#scale_tier ⇒ String
Required.
-
#worker_count ⇒ String
Optional.
-
#worker_type ⇒ String
Optional.
Instance Method Summary collapse
-
#initialize(**args) ⇒ GoogleCloudMlV1TrainingInput
constructor
A new instance of GoogleCloudMlV1TrainingInput.
-
#update!(**args) ⇒ Object
Update properties of this object.
Methods included from Core::JsonObjectSupport
Methods included from Core::Hashable
Constructor Details
#initialize(**args) ⇒ GoogleCloudMlV1TrainingInput
Returns a new instance of GoogleCloudMlV1TrainingInput
1495 1496 1497 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1495 def initialize(**args) update!(**args) end |
Instance Attribute Details
#args ⇒ Array<String>
Optional. Command line arguments to pass to the program.
Corresponds to the JSON property args
1473 1474 1475 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1473 def args @args end |
#hyperparameters ⇒ Google::Apis::MlV1::GoogleCloudMlV1HyperparameterSpec
Represents a set of hyperparameters to optimize.
Corresponds to the JSON property hyperparameters
1379 1380 1381 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1379 def hyperparameters @hyperparameters end |
#job_dir ⇒ String
Optional. A Google Cloud Storage path in which to store training outputs
and other data needed for training. This path is passed to your TensorFlow
program as the 'job_dir' command-line argument. The benefit of specifying
this field is that Cloud ML validates the path for use in training.
Corresponds to the JSON property jobDir
1374 1375 1376 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1374 def job_dir @job_dir end |
#master_type ⇒ String
Optional. Specifies the type of virtual machine to use for your training job's master worker. The following types are supported:
- standard
- A basic machine configuration suitable for training simple models with small to moderate datasets.
- large_model
- A machine with a lot of memory, specially suited for parameter servers when your model is large (having many hidden layers or layers with very large numbers of nodes).
- complex_model_s
- A machine suitable for the master and workers of the cluster when your model requires more computation than the standard machine can handle satisfactorily.
- complex_model_m
-
A machine with roughly twice the number of cores and roughly double the
memory of
complex_model_s. - complex_model_l
-
A machine with roughly twice the number of cores and roughly double the
memory of
complex_model_m. - standard_gpu
-
A machine equivalent to
standardthat also includes a GPU that you can use in your trainer. - complex_model_m_gpu
-
A machine equivalent to
coplex_model_mthat also includes four GPUs.
You must set this value when scaleTier is set to CUSTOM.
Corresponds to the JSON property masterType
1452 1453 1454 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1452 def master_type @master_type end |
#package_uris ⇒ Array<String>
Required. The Google Cloud Storage location of the packages with
the training program and any additional dependencies.
Corresponds to the JSON property packageUris
1394 1395 1396 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1394 def package_uris @package_uris end |
#parameter_server_count ⇒ String
Optional. The number of parameter server replicas to use for the training
job. Each replica in the cluster will be of the type specified in
parameter_server_type.
This value can only be used when scale_tier is set to CUSTOM.If you
set this value, you must also set parameter_server_type.
Corresponds to the JSON property parameterServerCount
1388 1389 1390 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1388 def parameter_server_count @parameter_server_count end |
#parameter_server_type ⇒ String
Optional. Specifies the type of virtual machine to use for your training
job's parameter server.
The supported values are the same as those described in the entry for
master_type.
This value must be present when scaleTier is set to CUSTOM and
parameter_server_count is greater than zero.
Corresponds to the JSON property parameterServerType
1493 1494 1495 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1493 def parameter_server_type @parameter_server_type end |
#python_module ⇒ String
Required. The Python module name to run after installing the packages.
Corresponds to the JSON property pythonModule
1463 1464 1465 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1463 def python_module @python_module end |
#region ⇒ String
Required. The Google Compute Engine region to run the training job in.
Corresponds to the JSON property region
1468 1469 1470 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1468 def region @region end |
#runtime_version ⇒ String
Optional. The Google Cloud ML runtime version to use for training. If not
set, Google Cloud ML will choose the latest stable version.
Corresponds to the JSON property runtimeVersion
1458 1459 1460 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1458 def runtime_version @runtime_version end |
#scale_tier ⇒ String
Required. Specifies the machine types, the number of replicas for workers
and parameter servers.
Corresponds to the JSON property scaleTier
1366 1367 1368 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1366 def scale_tier @scale_tier end |
#worker_count ⇒ String
Optional. The number of worker replicas to use for the training job. Each
replica in the cluster will be of the type specified in worker_type.
This value can only be used when scale_tier is set to CUSTOM. If you
set this value, you must also set worker_type.
Corresponds to the JSON property workerCount
1402 1403 1404 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1402 def worker_count @worker_count end |
#worker_type ⇒ String
Optional. Specifies the type of virtual machine to use for your training
job's worker nodes.
The supported values are the same as those described in the entry for
masterType.
This value must be present when scaleTier is set to CUSTOM and
workerCount is greater than zero.
Corresponds to the JSON property workerType
1483 1484 1485 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1483 def worker_type @worker_type end |
Instance Method Details
#update!(**args) ⇒ Object
Update properties of this object
1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1500 def update!(**args) @scale_tier = args[:scale_tier] if args.key?(:scale_tier) @job_dir = args[:job_dir] if args.key?(:job_dir) @hyperparameters = args[:hyperparameters] if args.key?(:hyperparameters) @parameter_server_count = args[:parameter_server_count] if args.key?(:parameter_server_count) @package_uris = args[:package_uris] if args.key?(:package_uris) @worker_count = args[:worker_count] if args.key?(:worker_count) @master_type = args[:master_type] if args.key?(:master_type) @runtime_version = args[:runtime_version] if args.key?(:runtime_version) @python_module = args[:python_module] if args.key?(:python_module) @region = args[:region] if args.key?(:region) @args = args[:args] if args.key?(:args) @worker_type = args[:worker_type] if args.key?(:worker_type) @parameter_server_type = args[:parameter_server_type] if args.key?(:parameter_server_type) end |