Class: Google::Apis::MlV1::GoogleCloudMlV1TrainingInput
- Inherits:
-
Object
- Object
- Google::Apis::MlV1::GoogleCloudMlV1TrainingInput
- Includes:
- Core::Hashable, Core::JsonObjectSupport
- Defined in:
- generated/google/apis/ml_v1/classes.rb,
generated/google/apis/ml_v1/representations.rb,
generated/google/apis/ml_v1/representations.rb
Overview
Represents input parameters for a training job.
Instance Attribute Summary collapse
-
#args ⇒ Array<String>
Optional.
-
#hyperparameters ⇒ Google::Apis::MlV1::GoogleCloudMlV1HyperparameterSpec
Represents a set of hyperparameters to optimize.
-
#job_dir ⇒ String
Optional.
-
#master_type ⇒ String
Optional.
-
#package_uris ⇒ Array<String>
Required.
-
#parameter_server_count ⇒ Fixnum
Optional.
-
#parameter_server_type ⇒ String
Optional.
-
#python_module ⇒ String
Required.
-
#region ⇒ String
Required.
-
#runtime_version ⇒ String
Optional.
-
#scale_tier ⇒ String
Required.
-
#worker_count ⇒ Fixnum
Optional.
-
#worker_type ⇒ String
Optional.
Instance Method Summary collapse
-
#initialize(**args) ⇒ GoogleCloudMlV1TrainingInput
constructor
A new instance of GoogleCloudMlV1TrainingInput.
-
#update!(**args) ⇒ Object
Update properties of this object.
Methods included from Core::JsonObjectSupport
Methods included from Core::Hashable
Constructor Details
#initialize(**args) ⇒ GoogleCloudMlV1TrainingInput
Returns a new instance of GoogleCloudMlV1TrainingInput
1465 1466 1467 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1465 def initialize(**args) update!(**args) end |
Instance Attribute Details
#args ⇒ Array<String>
Optional. Command line arguments to pass to the program.
Corresponds to the JSON property args
1408 1409 1410 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1408 def args @args end |
#hyperparameters ⇒ Google::Apis::MlV1::GoogleCloudMlV1HyperparameterSpec
Represents a set of hyperparameters to optimize.
Corresponds to the JSON property hyperparameters
1447 1448 1449 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1447 def hyperparameters @hyperparameters end |
#job_dir ⇒ String
Optional. A Google Cloud Storage path in which to store training outputs
and other data needed for training. This path is passed to your TensorFlow
program as the 'job_dir' command-line argument. The benefit of specifying
this field is that Cloud ML validates the path for use in training.
Corresponds to the JSON property jobDir
1442 1443 1444 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1442 def job_dir @job_dir end |
#master_type ⇒ String
Optional. Specifies the type of virtual machine to use for your training job's master worker. The following types are supported:
- standard
- A basic machine configuration suitable for training simple models with small to moderate datasets.
- large_model
- A machine with a lot of memory, specially suited for parameter servers when your model is large (having many hidden layers or layers with very large numbers of nodes).
- complex_model_s
- A machine suitable for the master and workers of the cluster when your model requires more computation than the standard machine can handle satisfactorily.
- complex_model_m
-
A machine with roughly twice the number of cores and roughly double the
memory of
complex_model_s. - complex_model_l
-
A machine with roughly twice the number of cores and roughly double the
memory of
complex_model_m. - standard_gpu
-
A machine equivalent to
standardthat also includes a GPU that you can use in your trainer. - complex_model_m_gpu
-
A machine equivalent to
complex_model_mthat also includes four GPUs.
You must set this value when scaleTier is set to CUSTOM.
Corresponds to the JSON property masterType
1387 1388 1389 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1387 def master_type @master_type end |
#package_uris ⇒ Array<String>
Required. The Google Cloud Storage location of the packages with
the training program and any additional dependencies.
The maximum number of package URIs is 100.
Corresponds to the JSON property packageUris
1463 1464 1465 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1463 def package_uris @package_uris end |
#parameter_server_count ⇒ Fixnum
Optional. The number of parameter server replicas to use for the training
job. Each replica in the cluster will be of the type specified in
parameter_server_type.
This value can only be used when scale_tier is set to CUSTOM.If you
set this value, you must also set parameter_server_type.
Corresponds to the JSON property parameterServerCount
1456 1457 1458 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1456 def parameter_server_count @parameter_server_count end |
#parameter_server_type ⇒ String
Optional. Specifies the type of virtual machine to use for your training
job's parameter server.
The supported values are the same as those described in the entry for
master_type.
This value must be present when scaleTier is set to CUSTOM and
parameter_server_count is greater than zero.
Corresponds to the JSON property parameterServerType
1428 1429 1430 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1428 def parameter_server_type @parameter_server_type end |
#python_module ⇒ String
Required. The Python module name to run after installing the packages.
Corresponds to the JSON property pythonModule
1398 1399 1400 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1398 def python_module @python_module end |
#region ⇒ String
Required. The Google Compute Engine region to run the training job in.
Corresponds to the JSON property region
1403 1404 1405 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1403 def region @region end |
#runtime_version ⇒ String
Optional. The Google Cloud ML runtime version to use for training. If not
set, Google Cloud ML will choose the latest stable version.
Corresponds to the JSON property runtimeVersion
1393 1394 1395 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1393 def runtime_version @runtime_version end |
#scale_tier ⇒ String
Required. Specifies the machine types, the number of replicas for workers
and parameter servers.
Corresponds to the JSON property scaleTier
1434 1435 1436 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1434 def scale_tier @scale_tier end |
#worker_count ⇒ Fixnum
Optional. The number of worker replicas to use for the training job. Each
replica in the cluster will be of the type specified in worker_type.
This value can only be used when scale_tier is set to CUSTOM. If you
set this value, you must also set worker_type.
Corresponds to the JSON property workerCount
1337 1338 1339 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1337 def worker_count @worker_count end |
#worker_type ⇒ String
Optional. Specifies the type of virtual machine to use for your training
job's worker nodes.
The supported values are the same as those described in the entry for
masterType.
This value must be present when scaleTier is set to CUSTOM and
workerCount is greater than zero.
Corresponds to the JSON property workerType
1418 1419 1420 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1418 def worker_type @worker_type end |
Instance Method Details
#update!(**args) ⇒ Object
Update properties of this object
1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1470 def update!(**args) @worker_count = args[:worker_count] if args.key?(:worker_count) @master_type = args[:master_type] if args.key?(:master_type) @runtime_version = args[:runtime_version] if args.key?(:runtime_version) @python_module = args[:python_module] if args.key?(:python_module) @region = args[:region] if args.key?(:region) @args = args[:args] if args.key?(:args) @worker_type = args[:worker_type] if args.key?(:worker_type) @parameter_server_type = args[:parameter_server_type] if args.key?(:parameter_server_type) @scale_tier = args[:scale_tier] if args.key?(:scale_tier) @job_dir = args[:job_dir] if args.key?(:job_dir) @hyperparameters = args[:hyperparameters] if args.key?(:hyperparameters) @parameter_server_count = args[:parameter_server_count] if args.key?(:parameter_server_count) @package_uris = args[:package_uris] if args.key?(:package_uris) end |