Class: Google::Apis::MlV1::GoogleCloudMlV1TrainingInput
- Inherits:
-
Object
- Object
- Google::Apis::MlV1::GoogleCloudMlV1TrainingInput
- Includes:
- Core::Hashable, Core::JsonObjectSupport
- Defined in:
- generated/google/apis/ml_v1/classes.rb,
generated/google/apis/ml_v1/representations.rb,
generated/google/apis/ml_v1/representations.rb
Overview
Represents input parameters for a training job.
Instance Attribute Summary collapse
-
#args ⇒ Array<String>
Optional.
-
#hyperparameters ⇒ Google::Apis::MlV1::GoogleCloudMlV1HyperparameterSpec
Represents a set of hyperparameters to optimize.
-
#job_dir ⇒ String
Optional.
-
#master_type ⇒ String
Optional.
-
#package_uris ⇒ Array<String>
Required.
-
#parameter_server_count ⇒ Fixnum
Optional.
-
#parameter_server_type ⇒ String
Optional.
-
#python_module ⇒ String
Required.
-
#region ⇒ String
Required.
-
#runtime_version ⇒ String
Optional.
-
#scale_tier ⇒ String
Required.
-
#worker_count ⇒ Fixnum
Optional.
-
#worker_type ⇒ String
Optional.
Instance Method Summary collapse
-
#initialize(**args) ⇒ GoogleCloudMlV1TrainingInput
constructor
A new instance of GoogleCloudMlV1TrainingInput.
-
#update!(**args) ⇒ Object
Update properties of this object.
Methods included from Core::JsonObjectSupport
Methods included from Core::Hashable
Constructor Details
#initialize(**args) ⇒ GoogleCloudMlV1TrainingInput
Returns a new instance of GoogleCloudMlV1TrainingInput
1148 1149 1150 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1148 def initialize(**args) update!(**args) end |
Instance Attribute Details
#args ⇒ Array<String>
Optional. Command line arguments to pass to the program.
Corresponds to the JSON property args
1017 1018 1019 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1017 def args @args end |
#hyperparameters ⇒ Google::Apis::MlV1::GoogleCloudMlV1HyperparameterSpec
Represents a set of hyperparameters to optimize.
Corresponds to the JSON property hyperparameters
1022 1023 1024 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1022 def hyperparameters @hyperparameters end |
#job_dir ⇒ String
Optional. A Google Cloud Storage path in which to store training outputs
and other data needed for training. This path is passed to your TensorFlow
program as the 'job_dir' command-line argument. The benefit of specifying
this field is that Cloud ML validates the path for use in training.
Corresponds to the JSON property jobDir
1030 1031 1032 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1030 def job_dir @job_dir end |
#master_type ⇒ String
Optional. Specifies the type of virtual machine to use for your training job's master worker. The following types are supported:
- standard
- A basic machine configuration suitable for training simple models with small to moderate datasets.
- large_model
- A machine with a lot of memory, specially suited for parameter servers when your model is large (having many hidden layers or layers with very large numbers of nodes).
- complex_model_s
- A machine suitable for the master and workers of the cluster when your model requires more computation than the standard machine can handle satisfactorily.
- complex_model_m
-
A machine with roughly twice the number of cores and roughly double the
memory of
complex_model_s. - complex_model_l
-
A machine with roughly twice the number of cores and roughly double the
memory of
complex_model_m. - standard_gpu
-
A machine equivalent to
standardthat also includes a GPU that you can use in your trainer. - complex_model_m_gpu
-
A machine equivalent to
complex_model_mthat also includes four GPUs.
You must set this value when scaleTier is set to CUSTOM.
Corresponds to the JSON property masterType
1080 1081 1082 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1080 def master_type @master_type end |
#package_uris ⇒ Array<String>
Required. The Google Cloud Storage location of the packages with
the training program and any additional dependencies.
The maximum number of package URIs is 100.
Corresponds to the JSON property packageUris
1087 1088 1089 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1087 def package_uris @package_uris end |
#parameter_server_count ⇒ Fixnum
Optional. The number of parameter server replicas to use for the training
job. Each replica in the cluster will be of the type specified in
parameter_server_type.
This value can only be used when scale_tier is set to CUSTOM.If you
set this value, you must also set parameter_server_type.
Corresponds to the JSON property parameterServerCount
1096 1097 1098 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1096 def parameter_server_count @parameter_server_count end |
#parameter_server_type ⇒ String
Optional. Specifies the type of virtual machine to use for your training
job's parameter server.
The supported values are the same as those described in the entry for
master_type.
This value must be present when scaleTier is set to CUSTOM and
parameter_server_count is greater than zero.
Corresponds to the JSON property parameterServerType
1106 1107 1108 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1106 def parameter_server_type @parameter_server_type end |
#python_module ⇒ String
Required. The Python module name to run after installing the packages.
Corresponds to the JSON property pythonModule
1111 1112 1113 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1111 def python_module @python_module end |
#region ⇒ String
Required. The Google Compute Engine region to run the training job in.
Corresponds to the JSON property region
1116 1117 1118 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1116 def region @region end |
#runtime_version ⇒ String
Optional. The Google Cloud ML runtime version to use for training. If not
set, Google Cloud ML will choose the latest stable version.
Corresponds to the JSON property runtimeVersion
1122 1123 1124 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1122 def runtime_version @runtime_version end |
#scale_tier ⇒ String
Required. Specifies the machine types, the number of replicas for workers
and parameter servers.
Corresponds to the JSON property scaleTier
1128 1129 1130 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1128 def scale_tier @scale_tier end |
#worker_count ⇒ Fixnum
Optional. The number of worker replicas to use for the training job. Each
replica in the cluster will be of the type specified in worker_type.
This value can only be used when scale_tier is set to CUSTOM. If you
set this value, you must also set worker_type.
Corresponds to the JSON property workerCount
1136 1137 1138 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1136 def worker_count @worker_count end |
#worker_type ⇒ String
Optional. Specifies the type of virtual machine to use for your training
job's worker nodes.
The supported values are the same as those described in the entry for
masterType.
This value must be present when scaleTier is set to CUSTOM and
workerCount is greater than zero.
Corresponds to the JSON property workerType
1146 1147 1148 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1146 def worker_type @worker_type end |
Instance Method Details
#update!(**args) ⇒ Object
Update properties of this object
1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1153 def update!(**args) @args = args[:args] if args.key?(:args) @hyperparameters = args[:hyperparameters] if args.key?(:hyperparameters) @job_dir = args[:job_dir] if args.key?(:job_dir) @master_type = args[:master_type] if args.key?(:master_type) @package_uris = args[:package_uris] if args.key?(:package_uris) @parameter_server_count = args[:parameter_server_count] if args.key?(:parameter_server_count) @parameter_server_type = args[:parameter_server_type] if args.key?(:parameter_server_type) @python_module = args[:python_module] if args.key?(:python_module) @region = args[:region] if args.key?(:region) @runtime_version = args[:runtime_version] if args.key?(:runtime_version) @scale_tier = args[:scale_tier] if args.key?(:scale_tier) @worker_count = args[:worker_count] if args.key?(:worker_count) @worker_type = args[:worker_type] if args.key?(:worker_type) end |