Class: Google::Apis::DlpV2beta1::GooglePrivacyDlpV2beta1PrivacyMetric

Inherits:
Object
  • Object
show all
Includes:
Core::Hashable, Core::JsonObjectSupport
Defined in:
generated/google/apis/dlp_v2beta1/classes.rb,
generated/google/apis/dlp_v2beta1/representations.rb,
generated/google/apis/dlp_v2beta1/representations.rb

Overview

Privacy metric to compute for reidentification risk analysis.

Instance Attribute Summary collapse

Instance Method Summary collapse

Methods included from Core::JsonObjectSupport

#to_json

Methods included from Core::Hashable

process_value, #to_h

Constructor Details

#initialize(**args) ⇒ GooglePrivacyDlpV2beta1PrivacyMetric

Returns a new instance of GooglePrivacyDlpV2beta1PrivacyMetric



2705
2706
2707
# File 'generated/google/apis/dlp_v2beta1/classes.rb', line 2705

def initialize(**args)
   update!(**args)
end

Instance Attribute Details

#categorical_stats_configGoogle::Apis::DlpV2beta1::GooglePrivacyDlpV2beta1CategoricalStatsConfig

Compute numerical stats over an individual column, including number of distinct values and value count distribution. Corresponds to the JSON property categoricalStatsConfig



2677
2678
2679
# File 'generated/google/apis/dlp_v2beta1/classes.rb', line 2677

def categorical_stats_config
  @categorical_stats_config
end

#k_anonymity_configGoogle::Apis::DlpV2beta1::GooglePrivacyDlpV2beta1KAnonymityConfig

k-anonymity metric, used for analysis of reidentification risk. Corresponds to the JSON property kAnonymityConfig



2682
2683
2684
# File 'generated/google/apis/dlp_v2beta1/classes.rb', line 2682

def k_anonymity_config
  @k_anonymity_config
end

#k_map_estimation_configGoogle::Apis::DlpV2beta1::GooglePrivacyDlpV2beta1KMapEstimationConfig

Reidentifiability metric. This corresponds to a risk model similar to what is called "journalist risk" in the literature, except the attack dataset is statistically modeled instead of being perfectly known. This can be done using publicly available data (like the US Census), or using a custom statistical model (indicated as one or several BigQuery tables), or by extrapolating from the distribution of values in the input dataset. Corresponds to the JSON property kMapEstimationConfig



2692
2693
2694
# File 'generated/google/apis/dlp_v2beta1/classes.rb', line 2692

def k_map_estimation_config
  @k_map_estimation_config
end

#l_diversity_configGoogle::Apis::DlpV2beta1::GooglePrivacyDlpV2beta1LDiversityConfig

l-diversity metric, used for analysis of reidentification risk. Corresponds to the JSON property lDiversityConfig



2697
2698
2699
# File 'generated/google/apis/dlp_v2beta1/classes.rb', line 2697

def l_diversity_config
  @l_diversity_config
end

#numerical_stats_configGoogle::Apis::DlpV2beta1::GooglePrivacyDlpV2beta1NumericalStatsConfig

Compute numerical stats over an individual column, including min, max, and quantiles. Corresponds to the JSON property numericalStatsConfig



2703
2704
2705
# File 'generated/google/apis/dlp_v2beta1/classes.rb', line 2703

def numerical_stats_config
  @numerical_stats_config
end

Instance Method Details

#update!(**args) ⇒ Object

Update properties of this object



2710
2711
2712
2713
2714
2715
2716
# File 'generated/google/apis/dlp_v2beta1/classes.rb', line 2710

def update!(**args)
  @categorical_stats_config = args[:categorical_stats_config] if args.key?(:categorical_stats_config)
  @k_anonymity_config = args[:k_anonymity_config] if args.key?(:k_anonymity_config)
  @k_map_estimation_config = args[:k_map_estimation_config] if args.key?(:k_map_estimation_config)
  @l_diversity_config = args[:l_diversity_config] if args.key?(:l_diversity_config)
  @numerical_stats_config = args[:numerical_stats_config] if args.key?(:numerical_stats_config)
end