Class: Google::Apis::MlV1::GoogleCloudMlV1TrainingInput
- Inherits:
-
Object
- Object
- Google::Apis::MlV1::GoogleCloudMlV1TrainingInput
- Includes:
- Core::Hashable, Core::JsonObjectSupport
- Defined in:
- generated/google/apis/ml_v1/classes.rb,
generated/google/apis/ml_v1/representations.rb,
generated/google/apis/ml_v1/representations.rb
Overview
Represents input parameters for a training job. When using the gcloud command to submit your training job, you can specify the input parameters as command-line arguments and/or in a YAML configuration file referenced from the --config command-line argument. For details, see the guide to submitting a training job.
Instance Attribute Summary collapse
-
#args ⇒ Array<String>
Optional.
-
#hyperparameters ⇒ Google::Apis::MlV1::GoogleCloudMlV1HyperparameterSpec
Represents a set of hyperparameters to optimize.
-
#job_dir ⇒ String
Optional.
-
#master_type ⇒ String
Optional.
-
#package_uris ⇒ Array<String>
Required.
-
#parameter_server_count ⇒ Fixnum
Optional.
-
#parameter_server_type ⇒ String
Optional.
-
#python_module ⇒ String
Required.
-
#python_version ⇒ String
Optional.
-
#region ⇒ String
Required.
-
#runtime_version ⇒ String
Optional.
-
#scale_tier ⇒ String
Required.
-
#worker_count ⇒ Fixnum
Optional.
-
#worker_type ⇒ String
Optional.
Instance Method Summary collapse
-
#initialize(**args) ⇒ GoogleCloudMlV1TrainingInput
constructor
A new instance of GoogleCloudMlV1TrainingInput.
-
#update!(**args) ⇒ Object
Update properties of this object.
Methods included from Core::JsonObjectSupport
Methods included from Core::Hashable
Constructor Details
#initialize(**args) ⇒ GoogleCloudMlV1TrainingInput
Returns a new instance of GoogleCloudMlV1TrainingInput
1159 1160 1161 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1159 def initialize(**args) update!(**args) end |
Instance Attribute Details
#args ⇒ Array<String>
Optional. Command line arguments to pass to the program.
Corresponds to the JSON property args
1000 1001 1002 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1000 def args @args end |
#hyperparameters ⇒ Google::Apis::MlV1::GoogleCloudMlV1HyperparameterSpec
Represents a set of hyperparameters to optimize.
Corresponds to the JSON property hyperparameters
1005 1006 1007 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1005 def hyperparameters @hyperparameters end |
#job_dir ⇒ String
Optional. A Google Cloud Storage path in which to store training outputs
and other data needed for training. This path is passed to your TensorFlow
program as the 'job_dir' command-line argument. The benefit of specifying
this field is that Cloud ML validates the path for use in training.
Corresponds to the JSON property jobDir
1013 1014 1015 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1013 def job_dir @job_dir end |
#master_type ⇒ String
Optional. Specifies the type of virtual machine to use for your training job's master worker. The following types are supported:
- standard
- A basic machine configuration suitable for training simple models with small to moderate datasets.
- large_model
- A machine with a lot of memory, specially suited for parameter servers when your model is large (having many hidden layers or layers with very large numbers of nodes).
- complex_model_s
- A machine suitable for the master and workers of the cluster when your model requires more computation than the standard machine can handle satisfactorily.
- complex_model_m
-
A machine with roughly twice the number of cores and roughly double the
memory of
complex_model_s. - complex_model_l
-
A machine with roughly twice the number of cores and roughly double the
memory of
complex_model_m. - standard_gpu
-
A machine equivalent to
standardthat also includes a single NVIDIA Tesla K80 GPU. See more about using GPUs for training your model. - complex_model_m_gpu
-
A machine equivalent to
complex_model_mthat also includes four NVIDIA Tesla K80 GPUs. - complex_model_l_gpu
-
A machine equivalent to
complex_model_lthat also includes eight NVIDIA Tesla K80 GPUs. - standard_p100
-
A machine equivalent to
standardthat also includes a single NVIDIA Tesla P100 GPU. The availability of these GPUs is in the Beta launch stage. - complex_model_m_p100
-
A machine equivalent to
complex_model_mthat also includes four NVIDIA Tesla P100 GPUs. The availability of these GPUs is in the Beta launch stage.
You must set this value when scaleTier is set to CUSTOM.
Corresponds to the JSON property masterType
1082 1083 1084 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1082 def master_type @master_type end |
#package_uris ⇒ Array<String>
Required. The Google Cloud Storage location of the packages with
the training program and any additional dependencies.
The maximum number of package URIs is 100.
Corresponds to the JSON property packageUris
1089 1090 1091 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1089 def package_uris @package_uris end |
#parameter_server_count ⇒ Fixnum
Optional. The number of parameter server replicas to use for the training
job. Each replica in the cluster will be of the type specified in
parameter_server_type.
This value can only be used when scale_tier is set to CUSTOM.If you
set this value, you must also set parameter_server_type.
Corresponds to the JSON property parameterServerCount
1098 1099 1100 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1098 def parameter_server_count @parameter_server_count end |
#parameter_server_type ⇒ String
Optional. Specifies the type of virtual machine to use for your training
job's parameter server.
The supported values are the same as those described in the entry for
master_type.
This value must be present when scaleTier is set to CUSTOM and
parameter_server_count is greater than zero.
Corresponds to the JSON property parameterServerType
1108 1109 1110 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1108 def parameter_server_type @parameter_server_type end |
#python_module ⇒ String
Required. The Python module name to run after installing the packages.
Corresponds to the JSON property pythonModule
1113 1114 1115 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1113 def python_module @python_module end |
#python_version ⇒ String
Optional. The version of Python used in training. If not set, the default
version is '2.7'. Python '3.5' is available when runtime_version is set
to '1.4' and above. Python '2.7' works with all supported runtime versions.
Corresponds to the JSON property pythonVersion
1120 1121 1122 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1120 def python_version @python_version end |
#region ⇒ String
Required. The Google Compute Engine region to run the training job in.
See the available regions for
ML Engine services.
Corresponds to the JSON property region
1127 1128 1129 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1127 def region @region end |
#runtime_version ⇒ String
Optional. The Google Cloud ML runtime version to use for training. If not
set, Google Cloud ML will choose the latest stable version.
Corresponds to the JSON property runtimeVersion
1133 1134 1135 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1133 def runtime_version @runtime_version end |
#scale_tier ⇒ String
Required. Specifies the machine types, the number of replicas for workers
and parameter servers.
Corresponds to the JSON property scaleTier
1139 1140 1141 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1139 def scale_tier @scale_tier end |
#worker_count ⇒ Fixnum
Optional. The number of worker replicas to use for the training job. Each
replica in the cluster will be of the type specified in worker_type.
This value can only be used when scale_tier is set to CUSTOM. If you
set this value, you must also set worker_type.
Corresponds to the JSON property workerCount
1147 1148 1149 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1147 def worker_count @worker_count end |
#worker_type ⇒ String
Optional. Specifies the type of virtual machine to use for your training
job's worker nodes.
The supported values are the same as those described in the entry for
masterType.
This value must be present when scaleTier is set to CUSTOM and
workerCount is greater than zero.
Corresponds to the JSON property workerType
1157 1158 1159 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1157 def worker_type @worker_type end |
Instance Method Details
#update!(**args) ⇒ Object
Update properties of this object
1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1164 def update!(**args) @args = args[:args] if args.key?(:args) @hyperparameters = args[:hyperparameters] if args.key?(:hyperparameters) @job_dir = args[:job_dir] if args.key?(:job_dir) @master_type = args[:master_type] if args.key?(:master_type) @package_uris = args[:package_uris] if args.key?(:package_uris) @parameter_server_count = args[:parameter_server_count] if args.key?(:parameter_server_count) @parameter_server_type = args[:parameter_server_type] if args.key?(:parameter_server_type) @python_module = args[:python_module] if args.key?(:python_module) @python_version = args[:python_version] if args.key?(:python_version) @region = args[:region] if args.key?(:region) @runtime_version = args[:runtime_version] if args.key?(:runtime_version) @scale_tier = args[:scale_tier] if args.key?(:scale_tier) @worker_count = args[:worker_count] if args.key?(:worker_count) @worker_type = args[:worker_type] if args.key?(:worker_type) end |