Class: Google::Apis::MlV1::GoogleCloudMlV1HyperparameterSpec

Inherits:
Object
  • Object
show all
Includes:
Core::Hashable, Core::JsonObjectSupport
Defined in:
generated/google/apis/ml_v1/classes.rb,
generated/google/apis/ml_v1/representations.rb,
generated/google/apis/ml_v1/representations.rb

Overview

Represents a set of hyperparameters to optimize.

Instance Attribute Summary collapse

Instance Method Summary collapse

Methods included from Core::JsonObjectSupport

#to_json

Methods included from Core::Hashable

process_value, #to_h

Constructor Details

#initialize(**args) ⇒ GoogleCloudMlV1HyperparameterSpec

Returns a new instance of GoogleCloudMlV1HyperparameterSpec



313
314
315
# File 'generated/google/apis/ml_v1/classes.rb', line 313

def initialize(**args)
   update!(**args)
end

Instance Attribute Details

#enable_trial_early_stoppingBoolean Also known as: enable_trial_early_stopping?

Optional. Indicates if the hyperparameter tuning job enables auto trial early stopping. Corresponds to the JSON property enableTrialEarlyStopping

Returns:

  • (Boolean)


263
264
265
# File 'generated/google/apis/ml_v1/classes.rb', line 263

def enable_trial_early_stopping
  @enable_trial_early_stopping
end

#goalString

Required. The type of goal to use for tuning. Available types are MAXIMIZE and MINIMIZE. Defaults to MAXIMIZE. Corresponds to the JSON property goal

Returns:

  • (String)


271
272
273
# File 'generated/google/apis/ml_v1/classes.rb', line 271

def goal
  @goal
end

#hyperparameter_metric_tagString

Optional. The Tensorflow summary tag name to use for optimizing trials. For current versions of Tensorflow, this tag name should exactly match what is shown in Tensorboard, including all scopes. For versions of Tensorflow prior to 0.12, this should be only the tag passed to tf.Summary. By default, "training/hptuning/metric" will be used. Corresponds to the JSON property hyperparameterMetricTag

Returns:

  • (String)


280
281
282
# File 'generated/google/apis/ml_v1/classes.rb', line 280

def hyperparameter_metric_tag
  @hyperparameter_metric_tag
end

#max_parallel_trialsFixnum

Optional. The number of training trials to run concurrently. You can reduce the time it takes to perform hyperparameter tuning by adding trials in parallel. However, each trail only benefits from the information gained in completed trials. That means that a trial does not get access to the results of trials running at the same time, which could reduce the quality of the overall optimization. Each trial will use the same scale tier and machine types. Defaults to one. Corresponds to the JSON property maxParallelTrials

Returns:

  • (Fixnum)


292
293
294
# File 'generated/google/apis/ml_v1/classes.rb', line 292

def max_parallel_trials
  @max_parallel_trials
end

#max_trialsFixnum

Optional. How many training trials should be attempted to optimize the specified hyperparameters. Defaults to one. Corresponds to the JSON property maxTrials

Returns:

  • (Fixnum)


299
300
301
# File 'generated/google/apis/ml_v1/classes.rb', line 299

def max_trials
  @max_trials
end

#paramsArray<Google::Apis::MlV1::GoogleCloudMlV1ParameterSpec>

Required. The set of parameters to tune. Corresponds to the JSON property params



304
305
306
# File 'generated/google/apis/ml_v1/classes.rb', line 304

def params
  @params
end

#resume_previous_job_idString

Optional. The prior hyperparameter tuning job id that users hope to continue with. The job id will be used to find the corresponding vizier study guid and resume the study. Corresponds to the JSON property resumePreviousJobId

Returns:

  • (String)


311
312
313
# File 'generated/google/apis/ml_v1/classes.rb', line 311

def resume_previous_job_id
  @resume_previous_job_id
end

Instance Method Details

#update!(**args) ⇒ Object

Update properties of this object



318
319
320
321
322
323
324
325
326
# File 'generated/google/apis/ml_v1/classes.rb', line 318

def update!(**args)
  @enable_trial_early_stopping = args[:enable_trial_early_stopping] if args.key?(:enable_trial_early_stopping)
  @goal = args[:goal] if args.key?(:goal)
  @hyperparameter_metric_tag = args[:hyperparameter_metric_tag] if args.key?(:hyperparameter_metric_tag)
  @max_parallel_trials = args[:max_parallel_trials] if args.key?(:max_parallel_trials)
  @max_trials = args[:max_trials] if args.key?(:max_trials)
  @params = args[:params] if args.key?(:params)
  @resume_previous_job_id = args[:resume_previous_job_id] if args.key?(:resume_previous_job_id)
end