Class: Google::Apis::PredictionV1_3::Training::ModelInfo
- Inherits:
-
Object
- Object
- Google::Apis::PredictionV1_3::Training::ModelInfo
- Includes:
- Core::Hashable, Core::JsonObjectSupport
- Defined in:
- generated/google/apis/prediction_v1_3/classes.rb,
generated/google/apis/prediction_v1_3/representations.rb,
generated/google/apis/prediction_v1_3/representations.rb
Overview
Model metadata.
Instance Attribute Summary collapse
-
#class_weighted_accuracy ⇒ Float
Estimated accuracy of model taking utility weights into account [Categorical models only].
-
#classification_accuracy ⇒ Float
A number between 0.0 and 1.0, where 1.0 is 100% accurate.
-
#confusion_matrix ⇒ Hash<String,Hash<String,Float>>
An output confusion matrix.
-
#confusion_matrix_row_totals ⇒ Hash<String,Float>
A list of the confusion matrix row totals Corresponds to the JSON property
confusionMatrixRowTotals
. -
#mean_squared_error ⇒ Float
An estimated mean squared error.
-
#model_type ⇒ String
Type of predictive model (CLASSIFICATION or REGRESSION) Corresponds to the JSON property
modelType
. -
#number_classes ⇒ Fixnum
Number of classes in the trained model [Categorical models only].
-
#number_instances ⇒ Fixnum
Number of valid data instances used in the trained model.
Instance Method Summary collapse
-
#initialize(**args) ⇒ ModelInfo
constructor
A new instance of ModelInfo.
-
#update!(**args) ⇒ Object
Update properties of this object.
Methods included from Core::JsonObjectSupport
Methods included from Core::Hashable
Constructor Details
#initialize(**args) ⇒ ModelInfo
Returns a new instance of ModelInfo
242 243 244 |
# File 'generated/google/apis/prediction_v1_3/classes.rb', line 242 def initialize(**args) update!(**args) end |
Instance Attribute Details
#class_weighted_accuracy ⇒ Float
Estimated accuracy of model taking utility weights into account [Categorical
models only].
Corresponds to the JSON property classWeightedAccuracy
195 196 197 |
# File 'generated/google/apis/prediction_v1_3/classes.rb', line 195 def class_weighted_accuracy @class_weighted_accuracy end |
#classification_accuracy ⇒ Float
A number between 0.0 and 1.0, where 1.0 is 100% accurate. This is an estimate,
based on the amount and quality of the training data, of the estimated
prediction accuracy. You can use this is a guide to decide whether the results
are accurate enough for your needs. This estimate will be more reliable if
your real input data is similar to your training data [Categorical models only]
.
Corresponds to the JSON property classificationAccuracy
205 206 207 |
# File 'generated/google/apis/prediction_v1_3/classes.rb', line 205 def classification_accuracy @classification_accuracy end |
#confusion_matrix ⇒ Hash<String,Hash<String,Float>>
An output confusion matrix. This shows an estimate for how this model will do
in predictions. This is first indexed by the true class label. For each true
class label, this provides a pair predicted_label, count
, where count is the
estimated number of times the model will predict the predicted label given the
true label. Will not output if more then 100 classes [Categorical models only].
Corresponds to the JSON property confusionMatrix
214 215 216 |
# File 'generated/google/apis/prediction_v1_3/classes.rb', line 214 def confusion_matrix @confusion_matrix end |
#confusion_matrix_row_totals ⇒ Hash<String,Float>
A list of the confusion matrix row totals
Corresponds to the JSON property confusionMatrixRowTotals
219 220 221 |
# File 'generated/google/apis/prediction_v1_3/classes.rb', line 219 def confusion_matrix_row_totals @confusion_matrix_row_totals end |
#mean_squared_error ⇒ Float
An estimated mean squared error. The can be used to measure the quality of the
predicted model [Regression models only].
Corresponds to the JSON property meanSquaredError
225 226 227 |
# File 'generated/google/apis/prediction_v1_3/classes.rb', line 225 def mean_squared_error @mean_squared_error end |
#model_type ⇒ String
Type of predictive model (CLASSIFICATION or REGRESSION)
Corresponds to the JSON property modelType
230 231 232 |
# File 'generated/google/apis/prediction_v1_3/classes.rb', line 230 def model_type @model_type end |
#number_classes ⇒ Fixnum
Number of classes in the trained model [Categorical models only].
Corresponds to the JSON property numberClasses
235 236 237 |
# File 'generated/google/apis/prediction_v1_3/classes.rb', line 235 def number_classes @number_classes end |
#number_instances ⇒ Fixnum
Number of valid data instances used in the trained model.
Corresponds to the JSON property numberInstances
240 241 242 |
# File 'generated/google/apis/prediction_v1_3/classes.rb', line 240 def number_instances @number_instances end |
Instance Method Details
#update!(**args) ⇒ Object
Update properties of this object
247 248 249 250 251 252 253 254 255 256 |
# File 'generated/google/apis/prediction_v1_3/classes.rb', line 247 def update!(**args) @class_weighted_accuracy = args[:class_weighted_accuracy] if args.key?(:class_weighted_accuracy) @classification_accuracy = args[:classification_accuracy] if args.key?(:classification_accuracy) @confusion_matrix = args[:confusion_matrix] if args.key?(:confusion_matrix) @confusion_matrix_row_totals = args[:confusion_matrix_row_totals] if args.key?(:confusion_matrix_row_totals) @mean_squared_error = args[:mean_squared_error] if args.key?(:mean_squared_error) @model_type = args[:model_type] if args.key?(:model_type) @number_classes = args[:number_classes] if args.key?(:number_classes) @number_instances = args[:number_instances] if args.key?(:number_instances) end |