Class: Google::Apis::SpannerV1::BeginTransactionRequest
- Inherits:
-
Object
- Object
- Google::Apis::SpannerV1::BeginTransactionRequest
- Includes:
- Core::Hashable, Core::JsonObjectSupport
- Defined in:
- generated/google/apis/spanner_v1/classes.rb,
generated/google/apis/spanner_v1/representations.rb,
generated/google/apis/spanner_v1/representations.rb
Overview
The request for BeginTransaction.
Instance Attribute Summary collapse
-
#options ⇒ Google::Apis::SpannerV1::TransactionOptions
Transactions Each session can have at most one active transaction at a time.
Instance Method Summary collapse
-
#initialize(**args) ⇒ BeginTransactionRequest
constructor
A new instance of BeginTransactionRequest.
-
#update!(**args) ⇒ Object
Update properties of this object.
Methods included from Core::JsonObjectSupport
Methods included from Core::Hashable
Constructor Details
#initialize(**args) ⇒ BeginTransactionRequest
Returns a new instance of BeginTransactionRequest
201 202 203 |
# File 'generated/google/apis/spanner_v1/classes.rb', line 201 def initialize(**args) update!(**args) end |
Instance Attribute Details
#options ⇒ Google::Apis::SpannerV1::TransactionOptions
Transactions
Each session can have at most one active transaction at a time. After the active transaction is completed, the session can immediately be re-used for the next transaction. It is not necessary to create a new session for each transaction.
Transaction Modes
Cloud Spanner supports two transaction modes:
- Locking read-write. This type of transaction is the only way to write data into Cloud Spanner. These transactions rely on pessimistic locking and, if necessary, two-phase commit. Locking read-write transactions may abort, requiring the application to retry.
- Snapshot read-only. This transaction type provides guaranteed
consistency across several reads, but does not allow
writes. Snapshot read-only transactions can be configured to
read at timestamps in the past. Snapshot read-only
transactions do not need to be committed.
For transactions that only read, snapshot read-only transactions
provide simpler semantics and are almost always faster. In
particular, read-only transactions do not take locks, so they do
not conflict with read-write transactions. As a consequence of not
taking locks, they also do not abort, so retry loops are not needed.
Transactions may only read/write data in a single database. They
may, however, read/write data in different tables within that
database.
## Locking Read-Write Transactions
Locking transactions may be used to atomically read-modify-write
data anywhere in a database. This type of transaction is externally
consistent.
Clients should attempt to minimize the amount of time a transaction
is active. Faster transactions commit with higher probability
and cause less contention. Cloud Spanner attempts to keep read locks
active as long as the transaction continues to do reads, and the
transaction has not been terminated by
Commit or
Rollback. Long periods of
inactivity at the client may cause Cloud Spanner to release a
transaction's locks and abort it.
Reads performed within a transaction acquire locks on the data
being read. Writes can only be done at commit time, after all reads
have been completed.
Conceptually, a read-write transaction consists of zero or more
reads or SQL queries followed by
Commit. At any time before
Commit, the client can send a
Rollback request to abort the
transaction.
### Semantics
Cloud Spanner can commit the transaction if all read locks it acquired
are still valid at commit time, and it is able to acquire write
locks for all writes. Cloud Spanner can abort the transaction for any
reason. If a commit attempt returns
ABORTED
, Cloud Spanner guarantees that the transaction has not modified any user data in Cloud Spanner. Unless the transaction commits, Cloud Spanner makes no guarantees about how long the transaction's locks were held for. It is an error to use Cloud Spanner locks for any sort of mutual exclusion other than between Cloud Spanner transactions themselves. ### Retrying Aborted Transactions When a transaction aborts, the application can choose to retry the whole transaction again. To maximize the chances of successfully committing the retry, the client should execute the retry in the same session as the original attempt. The original session's lock priority increases with each consecutive abort, meaning that each attempt has a slightly better chance of success than the previous. Under some circumstances (e.g., many transactions attempting to modify the same row(s)), a transaction can abort many times in a short period before successfully committing. Thus, it is not a good idea to cap the number of retries a transaction can attempt; instead, it is better to limit the total amount of wall time spent retrying. ### Idle Transactions A transaction is considered idle if it has no outstanding reads or SQL queries and has not started a read or SQL query within the last 10 seconds. Idle transactions can be aborted by Cloud Spanner so that they don't hold on to locks indefinitely. In that case, the commit will fail with errorABORTED
. If this behavior is undesirable, periodically executing a simple SQL query in the transaction (e.g.,SELECT 1
) prevents the transaction from becoming idle. ## Snapshot Read-Only Transactions Snapshot read-only transactions provides a simpler method than locking read-write transactions for doing several consistent reads. However, this type of transaction does not support writes. Snapshot transactions do not take locks. Instead, they work by choosing a Cloud Spanner timestamp, then executing all reads at that timestamp. Since they do not acquire locks, they do not block concurrent read-write transactions. Unlike locking read-write transactions, snapshot read-only transactions never abort. They can fail if the chosen read timestamp is garbage collected; however, the default garbage collection policy is generous enough that most applications do not need to worry about this in practice. Snapshot read-only transactions do not need to call Commit or Rollback (and in fact are not permitted to do so). To execute a snapshot transaction, the client specifies a timestamp bound, which tells Cloud Spanner how to choose a read timestamp. The types of timestamp bound are: - Strong (the default).
- Bounded staleness.
- Exact staleness.
If the Cloud Spanner database to be read is geographically distributed,
stale read-only transactions can execute more quickly than strong
or read-write transaction, because they are able to execute far
from the leader replica.
Each type of timestamp bound is discussed in detail below.
### Strong
Strong reads are guaranteed to see the effects of all transactions
that have committed before the start of the read. Furthermore, all
rows yielded by a single read are consistent with each other -- if
any part of the read observes a transaction, all parts of the read
see the transaction.
Strong reads are not repeatable: two consecutive strong read-only
transactions might return inconsistent results if there are
concurrent writes. If consistency across reads is required, the
reads should be executed within a transaction or at an exact read
timestamp.
See TransactionOptions.ReadOnly.strong.
### Exact Staleness
These timestamp bounds execute reads at a user-specified
timestamp. Reads at a timestamp are guaranteed to see a consistent
prefix of the global transaction history: they observe
modifications done by all transactions with a commit timestamp <=
the read timestamp, and observe none of the modifications done by
transactions with a larger commit timestamp. They will block until
all conflicting transactions that may be assigned commit timestamps
<= the read timestamp have finished.
The timestamp can either be expressed as an absolute Cloud Spanner commit
timestamp or a staleness relative to the current time.
These modes do not require a "negotiation phase" to pick a
timestamp. As a result, they execute slightly faster than the
equivalent boundedly stale concurrency modes. On the other hand,
boundedly stale reads usually return fresher results.
See TransactionOptions.ReadOnly.read_timestamp and
TransactionOptions.ReadOnly.exact_staleness.
### Bounded Staleness
Bounded staleness modes allow Cloud Spanner to pick the read timestamp,
subject to a user-provided staleness bound. Cloud Spanner chooses the
newest timestamp within the staleness bound that allows execution
of the reads at the closest available replica without blocking.
All rows yielded are consistent with each other -- if any part of
the read observes a transaction, all parts of the read see the
transaction. Boundedly stale reads are not repeatable: two stale
reads, even if they use the same staleness bound, can execute at
different timestamps and thus return inconsistent results.
Boundedly stale reads execute in two phases: the first phase
negotiates a timestamp among all replicas needed to serve the
read. In the second phase, reads are executed at the negotiated
timestamp.
As a result of the two phase execution, bounded staleness reads are
usually a little slower than comparable exact staleness
reads. However, they are typically able to return fresher
results, and are more likely to execute at the closest replica.
Because the timestamp negotiation requires up-front knowledge of
which rows will be read, it can only be used with single-use
read-only transactions.
See TransactionOptions.ReadOnly.max_staleness and
TransactionOptions.ReadOnly.min_read_timestamp.
### Old Read Timestamps and Garbage Collection
Cloud Spanner continuously garbage collects deleted and overwritten data
in the background to reclaim storage space. This process is known
as "version GC". By default, version GC reclaims versions after they
are one hour old. Because of this, Cloud Spanner cannot perform reads
at read timestamps more than one hour in the past. This
restriction also applies to in-progress reads and/or SQL queries whose
timestamp become too old while executing. Reads and SQL queries with
too-old read timestamps fail with the error
FAILED_PRECONDITION
. Corresponds to the JSON propertyoptions
199 200 201 |
# File 'generated/google/apis/spanner_v1/classes.rb', line 199 def @options end |
Instance Method Details
#update!(**args) ⇒ Object
Update properties of this object
206 207 208 |
# File 'generated/google/apis/spanner_v1/classes.rb', line 206 def update!(**args) @options = args[:options] if args.key?(:options) end |