Class: Google::Apis::BigqueryV2::TrainingOptions
- Inherits:
-
Object
- Object
- Google::Apis::BigqueryV2::TrainingOptions
- Includes:
- Core::Hashable, Core::JsonObjectSupport
- Defined in:
- generated/google/apis/bigquery_v2/classes.rb,
generated/google/apis/bigquery_v2/representations.rb,
generated/google/apis/bigquery_v2/representations.rb
Instance Attribute Summary collapse
-
#data_split_column ⇒ String
The column to split data with.
-
#data_split_eval_fraction ⇒ Float
The fraction of evaluation data over the whole input data.
-
#data_split_method ⇒ String
The data split type for training and evaluation, e.g.
-
#distance_type ⇒ String
[Beta] Distance type for clustering models.
-
#early_stop ⇒ Boolean
(also: #early_stop?)
Whether to stop early when the loss doesn't improve significantly any more (compared to min_relative_progress).
-
#initial_learn_rate ⇒ Float
Specifies the initial learning rate for line search to start at.
-
#input_label_columns ⇒ Array<String>
Name of input label columns in training data.
-
#l1_regularization ⇒ Float
L1 regularization coefficient.
-
#l2_regularization ⇒ Float
L2 regularization coefficient.
-
#label_class_weights ⇒ Hash<String,Float>
Weights associated with each label class, for rebalancing the training data.
-
#learn_rate ⇒ Float
Learning rate in training.
-
#learn_rate_strategy ⇒ String
The strategy to determine learning rate.
-
#loss_type ⇒ String
Type of loss function used during training run.
-
#max_iterations ⇒ Fixnum
The maximum number of iterations in training.
-
#min_relative_progress ⇒ Float
When early_stop is true, stops training when accuracy improvement is less than 'min_relative_progress'.
-
#num_clusters ⇒ Fixnum
[Beta] Number of clusters for clustering models.
-
#warm_start ⇒ Boolean
(also: #warm_start?)
Whether to train a model from the last checkpoint.
Instance Method Summary collapse
-
#initialize(**args) ⇒ TrainingOptions
constructor
A new instance of TrainingOptions.
-
#update!(**args) ⇒ Object
Update properties of this object.
Methods included from Core::JsonObjectSupport
Methods included from Core::Hashable
Constructor Details
#initialize(**args) ⇒ TrainingOptions
Returns a new instance of TrainingOptions
5017 5018 5019 |
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5017 def initialize(**args) update!(**args) end |
Instance Attribute Details
#data_split_column ⇒ String
The column to split data with. This column won't be used as a feature.
- When data_split_method is CUSTOM, the corresponding column should be boolean. The rows with true value tag are eval data, and the false are training data.
- When data_split_method is SEQ, the first DATA_SPLIT_EVAL_FRACTION
rows (from smallest to largest) in the corresponding column are used
as training data, and the rest are eval data. It respects the order
in Orderable data types:
https://cloud.google.com/bigquery/docs/reference/standard-sql/data-types#data-
type-properties
Corresponds to the JSON property
dataSplitColumn
4927 4928 4929 |
# File 'generated/google/apis/bigquery_v2/classes.rb', line 4927 def data_split_column @data_split_column end |
#data_split_eval_fraction ⇒ Float
The fraction of evaluation data over the whole input data. The rest
of data will be used as training data. The format should be double.
Accurate to two decimal places.
Default value is 0.2.
Corresponds to the JSON property dataSplitEvalFraction
4935 4936 4937 |
# File 'generated/google/apis/bigquery_v2/classes.rb', line 4935 def data_split_eval_fraction @data_split_eval_fraction end |
#data_split_method ⇒ String
The data split type for training and evaluation, e.g. RANDOM.
Corresponds to the JSON property dataSplitMethod
4940 4941 4942 |
# File 'generated/google/apis/bigquery_v2/classes.rb', line 4940 def data_split_method @data_split_method end |
#distance_type ⇒ String
[Beta] Distance type for clustering models.
Corresponds to the JSON property distanceType
4945 4946 4947 |
# File 'generated/google/apis/bigquery_v2/classes.rb', line 4945 def distance_type @distance_type end |
#early_stop ⇒ Boolean Also known as: early_stop?
Whether to stop early when the loss doesn't improve significantly
any more (compared to min_relative_progress).
Corresponds to the JSON property earlyStop
4951 4952 4953 |
# File 'generated/google/apis/bigquery_v2/classes.rb', line 4951 def early_stop @early_stop end |
#initial_learn_rate ⇒ Float
Specifies the initial learning rate for line search to start at.
Corresponds to the JSON property initialLearnRate
4957 4958 4959 |
# File 'generated/google/apis/bigquery_v2/classes.rb', line 4957 def initial_learn_rate @initial_learn_rate end |
#input_label_columns ⇒ Array<String>
Name of input label columns in training data.
Corresponds to the JSON property inputLabelColumns
4962 4963 4964 |
# File 'generated/google/apis/bigquery_v2/classes.rb', line 4962 def input_label_columns @input_label_columns end |
#l1_regularization ⇒ Float
L1 regularization coefficient.
Corresponds to the JSON property l1Regularization
4967 4968 4969 |
# File 'generated/google/apis/bigquery_v2/classes.rb', line 4967 def l1_regularization @l1_regularization end |
#l2_regularization ⇒ Float
L2 regularization coefficient.
Corresponds to the JSON property l2Regularization
4972 4973 4974 |
# File 'generated/google/apis/bigquery_v2/classes.rb', line 4972 def l2_regularization @l2_regularization end |
#label_class_weights ⇒ Hash<String,Float>
Weights associated with each label class, for rebalancing the
training data.
Corresponds to the JSON property labelClassWeights
4978 4979 4980 |
# File 'generated/google/apis/bigquery_v2/classes.rb', line 4978 def label_class_weights @label_class_weights end |
#learn_rate ⇒ Float
Learning rate in training.
Corresponds to the JSON property learnRate
4983 4984 4985 |
# File 'generated/google/apis/bigquery_v2/classes.rb', line 4983 def learn_rate @learn_rate end |
#learn_rate_strategy ⇒ String
The strategy to determine learning rate.
Corresponds to the JSON property learnRateStrategy
4988 4989 4990 |
# File 'generated/google/apis/bigquery_v2/classes.rb', line 4988 def learn_rate_strategy @learn_rate_strategy end |
#loss_type ⇒ String
Type of loss function used during training run.
Corresponds to the JSON property lossType
4993 4994 4995 |
# File 'generated/google/apis/bigquery_v2/classes.rb', line 4993 def loss_type @loss_type end |
#max_iterations ⇒ Fixnum
The maximum number of iterations in training.
Corresponds to the JSON property maxIterations
4998 4999 5000 |
# File 'generated/google/apis/bigquery_v2/classes.rb', line 4998 def max_iterations @max_iterations end |
#min_relative_progress ⇒ Float
When early_stop is true, stops training when accuracy improvement is
less than 'min_relative_progress'.
Corresponds to the JSON property minRelativeProgress
5004 5005 5006 |
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5004 def min_relative_progress @min_relative_progress end |
#num_clusters ⇒ Fixnum
[Beta] Number of clusters for clustering models.
Corresponds to the JSON property numClusters
5009 5010 5011 |
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5009 def num_clusters @num_clusters end |
#warm_start ⇒ Boolean Also known as: warm_start?
Whether to train a model from the last checkpoint.
Corresponds to the JSON property warmStart
5014 5015 5016 |
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5014 def warm_start @warm_start end |
Instance Method Details
#update!(**args) ⇒ Object
Update properties of this object
5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 |
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5022 def update!(**args) @data_split_column = args[:data_split_column] if args.key?(:data_split_column) @data_split_eval_fraction = args[:data_split_eval_fraction] if args.key?(:data_split_eval_fraction) @data_split_method = args[:data_split_method] if args.key?(:data_split_method) @distance_type = args[:distance_type] if args.key?(:distance_type) @early_stop = args[:early_stop] if args.key?(:early_stop) @initial_learn_rate = args[:initial_learn_rate] if args.key?(:initial_learn_rate) @input_label_columns = args[:input_label_columns] if args.key?(:input_label_columns) @l1_regularization = args[:l1_regularization] if args.key?(:l1_regularization) @l2_regularization = args[:l2_regularization] if args.key?(:l2_regularization) @label_class_weights = args[:label_class_weights] if args.key?(:label_class_weights) @learn_rate = args[:learn_rate] if args.key?(:learn_rate) @learn_rate_strategy = args[:learn_rate_strategy] if args.key?(:learn_rate_strategy) @loss_type = args[:loss_type] if args.key?(:loss_type) @max_iterations = args[:max_iterations] if args.key?(:max_iterations) @min_relative_progress = args[:min_relative_progress] if args.key?(:min_relative_progress) @num_clusters = args[:num_clusters] if args.key?(:num_clusters) @warm_start = args[:warm_start] if args.key?(:warm_start) end |