Class: Google::Apis::BigqueryV2::TrainingOptions
- Inherits:
-
Object
- Object
- Google::Apis::BigqueryV2::TrainingOptions
- Includes:
- Core::Hashable, Core::JsonObjectSupport
- Defined in:
- generated/google/apis/bigquery_v2/classes.rb,
generated/google/apis/bigquery_v2/representations.rb,
generated/google/apis/bigquery_v2/representations.rb
Instance Attribute Summary collapse
-
#data_split_column ⇒ String
The column to split data with.
-
#data_split_eval_fraction ⇒ Float
The fraction of evaluation data over the whole input data.
-
#data_split_method ⇒ String
The data split type for training and evaluation, e.g.
-
#distance_type ⇒ String
[Beta] Distance type for clustering models.
-
#early_stop ⇒ Boolean
(also: #early_stop?)
Whether to stop early when the loss doesn't improve significantly any more (compared to min_relative_progress).
-
#initial_learn_rate ⇒ Float
Specifies the initial learning rate for the line search learn rate strategy.
-
#input_label_columns ⇒ Array<String>
Name of input label columns in training data.
-
#l1_regularization ⇒ Float
L1 regularization coefficient.
-
#l2_regularization ⇒ Float
L2 regularization coefficient.
-
#label_class_weights ⇒ Hash<String,Float>
Weights associated with each label class, for rebalancing the training data.
-
#learn_rate ⇒ Float
Learning rate in training.
-
#learn_rate_strategy ⇒ String
The strategy to determine learn rate for the current iteration.
-
#loss_type ⇒ String
Type of loss function used during training run.
-
#max_iterations ⇒ Fixnum
The maximum number of iterations in training.
-
#min_relative_progress ⇒ Float
When early_stop is true, stops training when accuracy improvement is less than 'min_relative_progress'.
-
#model_uri ⇒ String
[Beta] Google Cloud Storage URI from which the model was imported.
-
#num_clusters ⇒ Fixnum
[Beta] Number of clusters for clustering models.
-
#optimization_strategy ⇒ String
Optimization strategy for training linear regression models.
-
#warm_start ⇒ Boolean
(also: #warm_start?)
Whether to train a model from the last checkpoint.
Instance Method Summary collapse
-
#initialize(**args) ⇒ TrainingOptions
constructor
A new instance of TrainingOptions.
-
#update!(**args) ⇒ Object
Update properties of this object.
Methods included from Core::JsonObjectSupport
Methods included from Core::Hashable
Constructor Details
#initialize(**args) ⇒ TrainingOptions
Returns a new instance of TrainingOptions
5043 5044 5045 |
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5043 def initialize(**args) update!(**args) end |
Instance Attribute Details
#data_split_column ⇒ String
The column to split data with. This column won't be used as a feature.
- When data_split_method is CUSTOM, the corresponding column should be boolean. The rows with true value tag are eval data, and the false are training data.
- When data_split_method is SEQ, the first DATA_SPLIT_EVAL_FRACTION
rows (from smallest to largest) in the corresponding column are used
as training data, and the rest are eval data. It respects the order
in Orderable data types:
https://cloud.google.com/bigquery/docs/reference/standard-sql/data-types#data-
type-properties
Corresponds to the JSON property
dataSplitColumn
4938 4939 4940 |
# File 'generated/google/apis/bigquery_v2/classes.rb', line 4938 def data_split_column @data_split_column end |
#data_split_eval_fraction ⇒ Float
The fraction of evaluation data over the whole input data. The rest
of data will be used as training data. The format should be double.
Accurate to two decimal places.
Default value is 0.2.
Corresponds to the JSON property dataSplitEvalFraction
4946 4947 4948 |
# File 'generated/google/apis/bigquery_v2/classes.rb', line 4946 def data_split_eval_fraction @data_split_eval_fraction end |
#data_split_method ⇒ String
The data split type for training and evaluation, e.g. RANDOM.
Corresponds to the JSON property dataSplitMethod
4951 4952 4953 |
# File 'generated/google/apis/bigquery_v2/classes.rb', line 4951 def data_split_method @data_split_method end |
#distance_type ⇒ String
[Beta] Distance type for clustering models.
Corresponds to the JSON property distanceType
4956 4957 4958 |
# File 'generated/google/apis/bigquery_v2/classes.rb', line 4956 def distance_type @distance_type end |
#early_stop ⇒ Boolean Also known as: early_stop?
Whether to stop early when the loss doesn't improve significantly
any more (compared to min_relative_progress). Used only for iterative
training algorithms.
Corresponds to the JSON property earlyStop
4963 4964 4965 |
# File 'generated/google/apis/bigquery_v2/classes.rb', line 4963 def early_stop @early_stop end |
#initial_learn_rate ⇒ Float
Specifies the initial learning rate for the line search learn rate
strategy.
Corresponds to the JSON property initialLearnRate
4970 4971 4972 |
# File 'generated/google/apis/bigquery_v2/classes.rb', line 4970 def initial_learn_rate @initial_learn_rate end |
#input_label_columns ⇒ Array<String>
Name of input label columns in training data.
Corresponds to the JSON property inputLabelColumns
4975 4976 4977 |
# File 'generated/google/apis/bigquery_v2/classes.rb', line 4975 def input_label_columns @input_label_columns end |
#l1_regularization ⇒ Float
L1 regularization coefficient.
Corresponds to the JSON property l1Regularization
4980 4981 4982 |
# File 'generated/google/apis/bigquery_v2/classes.rb', line 4980 def l1_regularization @l1_regularization end |
#l2_regularization ⇒ Float
L2 regularization coefficient.
Corresponds to the JSON property l2Regularization
4985 4986 4987 |
# File 'generated/google/apis/bigquery_v2/classes.rb', line 4985 def l2_regularization @l2_regularization end |
#label_class_weights ⇒ Hash<String,Float>
Weights associated with each label class, for rebalancing the
training data. Only applicable for classification models.
Corresponds to the JSON property labelClassWeights
4991 4992 4993 |
# File 'generated/google/apis/bigquery_v2/classes.rb', line 4991 def label_class_weights @label_class_weights end |
#learn_rate ⇒ Float
Learning rate in training. Used only for iterative training algorithms.
Corresponds to the JSON property learnRate
4996 4997 4998 |
# File 'generated/google/apis/bigquery_v2/classes.rb', line 4996 def learn_rate @learn_rate end |
#learn_rate_strategy ⇒ String
The strategy to determine learn rate for the current iteration.
Corresponds to the JSON property learnRateStrategy
5001 5002 5003 |
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5001 def learn_rate_strategy @learn_rate_strategy end |
#loss_type ⇒ String
Type of loss function used during training run.
Corresponds to the JSON property lossType
5006 5007 5008 |
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5006 def loss_type @loss_type end |
#max_iterations ⇒ Fixnum
The maximum number of iterations in training. Used only for iterative
training algorithms.
Corresponds to the JSON property maxIterations
5012 5013 5014 |
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5012 def max_iterations @max_iterations end |
#min_relative_progress ⇒ Float
When early_stop is true, stops training when accuracy improvement is
less than 'min_relative_progress'. Used only for iterative training
algorithms.
Corresponds to the JSON property minRelativeProgress
5019 5020 5021 |
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5019 def min_relative_progress @min_relative_progress end |
#model_uri ⇒ String
[Beta] Google Cloud Storage URI from which the model was imported. Only
applicable for imported models.
Corresponds to the JSON property modelUri
5025 5026 5027 |
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5025 def model_uri @model_uri end |
#num_clusters ⇒ Fixnum
[Beta] Number of clusters for clustering models.
Corresponds to the JSON property numClusters
5030 5031 5032 |
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5030 def num_clusters @num_clusters end |
#optimization_strategy ⇒ String
Optimization strategy for training linear regression models.
Corresponds to the JSON property optimizationStrategy
5035 5036 5037 |
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5035 def optimization_strategy @optimization_strategy end |
#warm_start ⇒ Boolean Also known as: warm_start?
Whether to train a model from the last checkpoint.
Corresponds to the JSON property warmStart
5040 5041 5042 |
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5040 def warm_start @warm_start end |
Instance Method Details
#update!(**args) ⇒ Object
Update properties of this object
5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 |
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5048 def update!(**args) @data_split_column = args[:data_split_column] if args.key?(:data_split_column) @data_split_eval_fraction = args[:data_split_eval_fraction] if args.key?(:data_split_eval_fraction) @data_split_method = args[:data_split_method] if args.key?(:data_split_method) @distance_type = args[:distance_type] if args.key?(:distance_type) @early_stop = args[:early_stop] if args.key?(:early_stop) @initial_learn_rate = args[:initial_learn_rate] if args.key?(:initial_learn_rate) @input_label_columns = args[:input_label_columns] if args.key?(:input_label_columns) @l1_regularization = args[:l1_regularization] if args.key?(:l1_regularization) @l2_regularization = args[:l2_regularization] if args.key?(:l2_regularization) @label_class_weights = args[:label_class_weights] if args.key?(:label_class_weights) @learn_rate = args[:learn_rate] if args.key?(:learn_rate) @learn_rate_strategy = args[:learn_rate_strategy] if args.key?(:learn_rate_strategy) @loss_type = args[:loss_type] if args.key?(:loss_type) @max_iterations = args[:max_iterations] if args.key?(:max_iterations) @min_relative_progress = args[:min_relative_progress] if args.key?(:min_relative_progress) @model_uri = args[:model_uri] if args.key?(:model_uri) @num_clusters = args[:num_clusters] if args.key?(:num_clusters) @optimization_strategy = args[:optimization_strategy] if args.key?(:optimization_strategy) @warm_start = args[:warm_start] if args.key?(:warm_start) end |