Class: Google::Apis::BigqueryV2::TrainingOptions

Inherits:
Object
  • Object
show all
Includes:
Core::Hashable, Core::JsonObjectSupport
Defined in:
generated/google/apis/bigquery_v2/classes.rb,
generated/google/apis/bigquery_v2/representations.rb,
generated/google/apis/bigquery_v2/representations.rb

Instance Attribute Summary collapse

Instance Method Summary collapse

Methods included from Core::JsonObjectSupport

#to_json

Methods included from Core::Hashable

process_value, #to_h

Constructor Details

#initialize(**args) ⇒ TrainingOptions

Returns a new instance of TrainingOptions



5043
5044
5045
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5043

def initialize(**args)
   update!(**args)
end

Instance Attribute Details

#data_split_columnString

The column to split data with. This column won't be used as a feature.

  1. When data_split_method is CUSTOM, the corresponding column should be boolean. The rows with true value tag are eval data, and the false are training data.
  2. When data_split_method is SEQ, the first DATA_SPLIT_EVAL_FRACTION rows (from smallest to largest) in the corresponding column are used as training data, and the rest are eval data. It respects the order in Orderable data types: https://cloud.google.com/bigquery/docs/reference/standard-sql/data-types#data- type-properties Corresponds to the JSON property dataSplitColumn

Returns:

  • (String)


4938
4939
4940
# File 'generated/google/apis/bigquery_v2/classes.rb', line 4938

def data_split_column
  @data_split_column
end

#data_split_eval_fractionFloat

The fraction of evaluation data over the whole input data. The rest of data will be used as training data. The format should be double. Accurate to two decimal places. Default value is 0.2. Corresponds to the JSON property dataSplitEvalFraction

Returns:

  • (Float)


4946
4947
4948
# File 'generated/google/apis/bigquery_v2/classes.rb', line 4946

def data_split_eval_fraction
  @data_split_eval_fraction
end

#data_split_methodString

The data split type for training and evaluation, e.g. RANDOM. Corresponds to the JSON property dataSplitMethod

Returns:

  • (String)


4951
4952
4953
# File 'generated/google/apis/bigquery_v2/classes.rb', line 4951

def data_split_method
  @data_split_method
end

#distance_typeString

[Beta] Distance type for clustering models. Corresponds to the JSON property distanceType

Returns:

  • (String)


4956
4957
4958
# File 'generated/google/apis/bigquery_v2/classes.rb', line 4956

def distance_type
  @distance_type
end

#early_stopBoolean Also known as: early_stop?

Whether to stop early when the loss doesn't improve significantly any more (compared to min_relative_progress). Used only for iterative training algorithms. Corresponds to the JSON property earlyStop

Returns:

  • (Boolean)


4963
4964
4965
# File 'generated/google/apis/bigquery_v2/classes.rb', line 4963

def early_stop
  @early_stop
end

#initial_learn_rateFloat

Specifies the initial learning rate for the line search learn rate strategy. Corresponds to the JSON property initialLearnRate

Returns:

  • (Float)


4970
4971
4972
# File 'generated/google/apis/bigquery_v2/classes.rb', line 4970

def initial_learn_rate
  @initial_learn_rate
end

#input_label_columnsArray<String>

Name of input label columns in training data. Corresponds to the JSON property inputLabelColumns

Returns:

  • (Array<String>)


4975
4976
4977
# File 'generated/google/apis/bigquery_v2/classes.rb', line 4975

def input_label_columns
  @input_label_columns
end

#l1_regularizationFloat

L1 regularization coefficient. Corresponds to the JSON property l1Regularization

Returns:

  • (Float)


4980
4981
4982
# File 'generated/google/apis/bigquery_v2/classes.rb', line 4980

def l1_regularization
  @l1_regularization
end

#l2_regularizationFloat

L2 regularization coefficient. Corresponds to the JSON property l2Regularization

Returns:

  • (Float)


4985
4986
4987
# File 'generated/google/apis/bigquery_v2/classes.rb', line 4985

def l2_regularization
  @l2_regularization
end

#label_class_weightsHash<String,Float>

Weights associated with each label class, for rebalancing the training data. Only applicable for classification models. Corresponds to the JSON property labelClassWeights

Returns:

  • (Hash<String,Float>)


4991
4992
4993
# File 'generated/google/apis/bigquery_v2/classes.rb', line 4991

def label_class_weights
  @label_class_weights
end

#learn_rateFloat

Learning rate in training. Used only for iterative training algorithms. Corresponds to the JSON property learnRate

Returns:

  • (Float)


4996
4997
4998
# File 'generated/google/apis/bigquery_v2/classes.rb', line 4996

def learn_rate
  @learn_rate
end

#learn_rate_strategyString

The strategy to determine learn rate for the current iteration. Corresponds to the JSON property learnRateStrategy

Returns:

  • (String)


5001
5002
5003
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5001

def learn_rate_strategy
  @learn_rate_strategy
end

#loss_typeString

Type of loss function used during training run. Corresponds to the JSON property lossType

Returns:

  • (String)


5006
5007
5008
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5006

def loss_type
  @loss_type
end

#max_iterationsFixnum

The maximum number of iterations in training. Used only for iterative training algorithms. Corresponds to the JSON property maxIterations

Returns:

  • (Fixnum)


5012
5013
5014
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5012

def max_iterations
  @max_iterations
end

#min_relative_progressFloat

When early_stop is true, stops training when accuracy improvement is less than 'min_relative_progress'. Used only for iterative training algorithms. Corresponds to the JSON property minRelativeProgress

Returns:

  • (Float)


5019
5020
5021
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5019

def min_relative_progress
  @min_relative_progress
end

#model_uriString

[Beta] Google Cloud Storage URI from which the model was imported. Only applicable for imported models. Corresponds to the JSON property modelUri

Returns:

  • (String)


5025
5026
5027
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5025

def model_uri
  @model_uri
end

#num_clustersFixnum

[Beta] Number of clusters for clustering models. Corresponds to the JSON property numClusters

Returns:

  • (Fixnum)


5030
5031
5032
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5030

def num_clusters
  @num_clusters
end

#optimization_strategyString

Optimization strategy for training linear regression models. Corresponds to the JSON property optimizationStrategy

Returns:

  • (String)


5035
5036
5037
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5035

def optimization_strategy
  @optimization_strategy
end

#warm_startBoolean Also known as: warm_start?

Whether to train a model from the last checkpoint. Corresponds to the JSON property warmStart

Returns:

  • (Boolean)


5040
5041
5042
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5040

def warm_start
  @warm_start
end

Instance Method Details

#update!(**args) ⇒ Object

Update properties of this object



5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5048

def update!(**args)
  @data_split_column = args[:data_split_column] if args.key?(:data_split_column)
  @data_split_eval_fraction = args[:data_split_eval_fraction] if args.key?(:data_split_eval_fraction)
  @data_split_method = args[:data_split_method] if args.key?(:data_split_method)
  @distance_type = args[:distance_type] if args.key?(:distance_type)
  @early_stop = args[:early_stop] if args.key?(:early_stop)
  @initial_learn_rate = args[:initial_learn_rate] if args.key?(:initial_learn_rate)
  @input_label_columns = args[:input_label_columns] if args.key?(:input_label_columns)
  @l1_regularization = args[:l1_regularization] if args.key?(:l1_regularization)
  @l2_regularization = args[:l2_regularization] if args.key?(:l2_regularization)
  @label_class_weights = args[:label_class_weights] if args.key?(:label_class_weights)
  @learn_rate = args[:learn_rate] if args.key?(:learn_rate)
  @learn_rate_strategy = args[:learn_rate_strategy] if args.key?(:learn_rate_strategy)
  @loss_type = args[:loss_type] if args.key?(:loss_type)
  @max_iterations = args[:max_iterations] if args.key?(:max_iterations)
  @min_relative_progress = args[:min_relative_progress] if args.key?(:min_relative_progress)
  @model_uri = args[:model_uri] if args.key?(:model_uri)
  @num_clusters = args[:num_clusters] if args.key?(:num_clusters)
  @optimization_strategy = args[:optimization_strategy] if args.key?(:optimization_strategy)
  @warm_start = args[:warm_start] if args.key?(:warm_start)
end