Class: Google::Apis::MlV1::GoogleCloudMlV1Version
- Inherits:
-
Object
- Object
- Google::Apis::MlV1::GoogleCloudMlV1Version
- Includes:
- Core::Hashable, Core::JsonObjectSupport
- Defined in:
- generated/google/apis/ml_v1/classes.rb,
generated/google/apis/ml_v1/representations.rb,
generated/google/apis/ml_v1/representations.rb
Overview
Represents a version of the model. Each version is a trained model deployed in the cloud, ready to handle prediction requests. A model can have multiple versions. You can get information about all of the versions of a given model by calling projects.models.versions.list.
Instance Attribute Summary collapse
-
#auto_scaling ⇒ Google::Apis::MlV1::GoogleCloudMlV1AutoScaling
Options for automatically scaling a model.
-
#create_time ⇒ String
Output only.
-
#deployment_uri ⇒ String
Required.
-
#description ⇒ String
Optional.
-
#error_message ⇒ String
Output only.
-
#etag ⇒ String
etagis used for optimistic concurrency control as a way to help prevent simultaneous updates of a model from overwriting each other. -
#framework ⇒ String
Optional.
-
#is_default ⇒ Boolean
(also: #is_default?)
Output only.
-
#labels ⇒ Hash<String,String>
Optional.
-
#last_use_time ⇒ String
Output only.
-
#machine_type ⇒ String
Optional.
-
#manual_scaling ⇒ Google::Apis::MlV1::GoogleCloudMlV1ManualScaling
Options for manually scaling a model.
-
#name ⇒ String
Required.The name specified for the version when it was created.
-
#package_uris ⇒ Array<String>
Optional.
-
#prediction_class ⇒ String
Optional.
-
#python_version ⇒ String
Optional.
-
#runtime_version ⇒ String
Optional.
-
#service_account ⇒ String
Optional.
-
#state ⇒ String
Output only.
Instance Method Summary collapse
-
#initialize(**args) ⇒ GoogleCloudMlV1Version
constructor
A new instance of GoogleCloudMlV1Version.
-
#update!(**args) ⇒ Object
Update properties of this object.
Methods included from Core::JsonObjectSupport
Methods included from Core::Hashable
Constructor Details
#initialize(**args) ⇒ GoogleCloudMlV1Version
Returns a new instance of GoogleCloudMlV1Version
1745 1746 1747 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1745 def initialize(**args) update!(**args) end |
Instance Attribute Details
#auto_scaling ⇒ Google::Apis::MlV1::GoogleCloudMlV1AutoScaling
Options for automatically scaling a model.
Corresponds to the JSON property autoScaling
1548 1549 1550 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1548 def auto_scaling @auto_scaling end |
#create_time ⇒ String
Output only. The time the version was created.
Corresponds to the JSON property createTime
1553 1554 1555 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1553 def create_time @create_time end |
#deployment_uri ⇒ String
Required. The Cloud Storage location of the trained model used to
create the version. See the
guide to model
deployment for more
information.
When passing Version to
projects.models.versions.create
the model service uses the specified location as the source of the model.
Once deployed, the model version is hosted by the prediction service, so
this location is useful only as a historical record.
The total number of model files can't exceed 1000.
Corresponds to the JSON property deploymentUri
1569 1570 1571 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1569 def deployment_uri @deployment_uri end |
#description ⇒ String
Optional. The description specified for the version when it was created.
Corresponds to the JSON property description
1574 1575 1576 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1574 def description @description end |
#error_message ⇒ String
Output only. The details of a failure or a cancellation.
Corresponds to the JSON property errorMessage
1579 1580 1581 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1579 def @error_message end |
#etag ⇒ String
etag is used for optimistic concurrency control as a way to help
prevent simultaneous updates of a model from overwriting each other.
It is strongly suggested that systems make use of the etag in the
read-modify-write cycle to perform model updates in order to avoid race
conditions: An etag is returned in the response to GetVersion, and
systems are expected to put that etag in the request to UpdateVersion to
ensure that their change will be applied to the model as intended.
Corresponds to the JSON property etag
NOTE: Values are automatically base64 encoded/decoded in the client library.
1591 1592 1593 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1591 def etag @etag end |
#framework ⇒ String
Optional. The machine learning framework AI Platform uses to train
this version of the model. Valid values are TENSORFLOW, SCIKIT_LEARN,
XGBOOST. If you do not specify a framework, AI Platform
will analyze files in the deployment_uri to determine a framework. If you
choose SCIKIT_LEARN or XGBOOST, you must also set the runtime version
of the model to 1.4 or greater.
Do not specify a framework if you're deploying a custom
prediction routine.
Corresponds to the JSON property framework
1603 1604 1605 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1603 def framework @framework end |
#is_default ⇒ Boolean Also known as: is_default?
Output only. If true, this version will be used to handle prediction
requests that do not specify a version.
You can change the default version by calling
projects.methods.versions.setDefault.
Corresponds to the JSON property isDefault
1612 1613 1614 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1612 def is_default @is_default end |
#labels ⇒ Hash<String,String>
Optional. One or more labels that you can add, to organize your model
versions. Each label is a key-value pair, where both the key and the value
are arbitrary strings that you supply.
For more information, see the documentation on
using labels.
Corresponds to the JSON property labels
1622 1623 1624 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1622 def labels @labels end |
#last_use_time ⇒ String
Output only. The time the version was last used for prediction.
Corresponds to the JSON property lastUseTime
1627 1628 1629 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1627 def last_use_time @last_use_time end |
#machine_type ⇒ String
Optional. The type of machine on which to serve the model. Currently only applies to online prediction service.
- mls1-c1-m2
- The default machine type, with 1 core and 2 GB RAM. The deprecated name for this machine type is "mls1-highmem-1".
- mls1-c4-m2
- In Beta. This machine type has 4 cores and 2 GB RAM. The deprecated name for this machine type is "mls1-highcpu-4".
Corresponds to the JSON property machineType
1645 1646 1647 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1645 def machine_type @machine_type end |
#manual_scaling ⇒ Google::Apis::MlV1::GoogleCloudMlV1ManualScaling
Options for manually scaling a model.
Corresponds to the JSON property manualScaling
1650 1651 1652 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1650 def manual_scaling @manual_scaling end |
#name ⇒ String
Required.The name specified for the version when it was created.
The version name must be unique within the model it is created in.
Corresponds to the JSON property name
1656 1657 1658 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1656 def name @name end |
#package_uris ⇒ Array<String>
Optional. Cloud Storage paths (gs://…) of packages for custom
prediction routines
or scikit-learn pipelines with custom
code.
For a custom prediction routine, one of these packages must contain your
Predictor class (see
predictionClass). Additionally,
include any dependencies used by your Predictor or scikit-learn pipeline
uses that are not already included in your selected runtime
version.
If you specify this field, you must also set
runtimeVersion to 1.4 or greater.
Corresponds to the JSON property packageUris
1672 1673 1674 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1672 def package_uris @package_uris end |
#prediction_class ⇒ String
Optional. The fully qualified name
(module_name.class_name) of a class that implements
the Predictor interface described in this reference field. The module
containing this class should be included in a package provided to the
packageUris field.
Specify this field if and only if you are deploying a custom prediction
routine (beta).
If you specify this field, you must set
runtimeVersion to 1.4 or greater.
The following code sample provides the Predictor interface:
class Predictor(object):
"""Interface for constructing custom predictors."""
def predict(self, instances, **kwargs):
"""Performs custom prediction.
Instances are the decoded values from the request. They have already
been deserialized from JSON.
Args:
instances: A list of prediction input instances.
**kwargs: A dictionary of keyword args provided as additional
fields on the predict request body.
Returns:
A list of outputs containing the prediction results. This list must
be JSON serializable.
"""
raise NotImplementedError()
def from_path(cls, model_dir):
"""Creates an instance of Predictor using the given path.
Loading of the predictor should be done in this method.
Args:
model_dir: The local directory that contains the exported model
file along with any additional files uploaded when creating the
version resource.
Returns:
An instance implementing this Predictor class.
"""
raise NotImplementedError()
Learn more about the Predictor interface and custom prediction
routines.
Corresponds to the JSON property predictionClass
1717 1718 1719 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1717 def prediction_class @prediction_class end |
#python_version ⇒ String
Optional. The version of Python used in prediction. If not set, the default
version is '2.7'. Python '3.5' is available when runtime_version is set
to '1.4' and above. Python '2.7' works with all supported runtime versions.
Corresponds to the JSON property pythonVersion
1724 1725 1726 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1724 def python_version @python_version end |
#runtime_version ⇒ String
Optional. The AI Platform runtime version to use for this deployment.
If not set, AI Platform uses the default stable version, 1.0. For more
information, see the
runtime version list and
how to manage runtime versions.
Corresponds to the JSON property runtimeVersion
1733 1734 1735 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1733 def runtime_version @runtime_version end |
#service_account ⇒ String
Optional. Specifies the service account for resource access control.
Corresponds to the JSON property serviceAccount
1738 1739 1740 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1738 def service_account @service_account end |
#state ⇒ String
Output only. The state of a version.
Corresponds to the JSON property state
1743 1744 1745 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1743 def state @state end |
Instance Method Details
#update!(**args) ⇒ Object
Update properties of this object
1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1750 def update!(**args) @auto_scaling = args[:auto_scaling] if args.key?(:auto_scaling) @create_time = args[:create_time] if args.key?(:create_time) @deployment_uri = args[:deployment_uri] if args.key?(:deployment_uri) @description = args[:description] if args.key?(:description) @error_message = args[:error_message] if args.key?(:error_message) @etag = args[:etag] if args.key?(:etag) @framework = args[:framework] if args.key?(:framework) @is_default = args[:is_default] if args.key?(:is_default) @labels = args[:labels] if args.key?(:labels) @last_use_time = args[:last_use_time] if args.key?(:last_use_time) @machine_type = args[:machine_type] if args.key?(:machine_type) @manual_scaling = args[:manual_scaling] if args.key?(:manual_scaling) @name = args[:name] if args.key?(:name) @package_uris = args[:package_uris] if args.key?(:package_uris) @prediction_class = args[:prediction_class] if args.key?(:prediction_class) @python_version = args[:python_version] if args.key?(:python_version) @runtime_version = args[:runtime_version] if args.key?(:runtime_version) @service_account = args[:service_account] if args.key?(:service_account) @state = args[:state] if args.key?(:state) end |