Class: Google::Apis::BigqueryV2::TrainingOptions

Inherits:
Object
  • Object
show all
Includes:
Core::Hashable, Core::JsonObjectSupport
Defined in:
generated/google/apis/bigquery_v2/classes.rb,
generated/google/apis/bigquery_v2/representations.rb,
generated/google/apis/bigquery_v2/representations.rb

Instance Attribute Summary collapse

Instance Method Summary collapse

Methods included from Core::JsonObjectSupport

#to_json

Methods included from Core::Hashable

process_value, #to_h

Constructor Details

#initialize(**args) ⇒ TrainingOptions

Returns a new instance of TrainingOptions



5281
5282
5283
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5281

def initialize(**args)
   update!(**args)
end

Instance Attribute Details

#data_split_columnString

The column to split data with. This column won't be used as a feature.

  1. When data_split_method is CUSTOM, the corresponding column should be boolean. The rows with true value tag are eval data, and the false are training data.
  2. When data_split_method is SEQ, the first DATA_SPLIT_EVAL_FRACTION rows (from smallest to largest) in the corresponding column are used as training data, and the rest are eval data. It respects the order in Orderable data types: https://cloud.google.com/bigquery/docs/reference/standard-sql/data-types#data- type-properties Corresponds to the JSON property dataSplitColumn

Returns:

  • (String)


5176
5177
5178
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5176

def data_split_column
  @data_split_column
end

#data_split_eval_fractionFloat

The fraction of evaluation data over the whole input data. The rest of data will be used as training data. The format should be double. Accurate to two decimal places. Default value is 0.2. Corresponds to the JSON property dataSplitEvalFraction

Returns:

  • (Float)


5184
5185
5186
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5184

def data_split_eval_fraction
  @data_split_eval_fraction
end

#data_split_methodString

The data split type for training and evaluation, e.g. RANDOM. Corresponds to the JSON property dataSplitMethod

Returns:

  • (String)


5189
5190
5191
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5189

def data_split_method
  @data_split_method
end

#distance_typeString

[Beta] Distance type for clustering models. Corresponds to the JSON property distanceType

Returns:

  • (String)


5194
5195
5196
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5194

def distance_type
  @distance_type
end

#early_stopBoolean Also known as: early_stop?

Whether to stop early when the loss doesn't improve significantly any more (compared to min_relative_progress). Used only for iterative training algorithms. Corresponds to the JSON property earlyStop

Returns:

  • (Boolean)


5201
5202
5203
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5201

def early_stop
  @early_stop
end

#initial_learn_rateFloat

Specifies the initial learning rate for the line search learn rate strategy. Corresponds to the JSON property initialLearnRate

Returns:

  • (Float)


5208
5209
5210
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5208

def initial_learn_rate
  @initial_learn_rate
end

#input_label_columnsArray<String>

Name of input label columns in training data. Corresponds to the JSON property inputLabelColumns

Returns:

  • (Array<String>)


5213
5214
5215
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5213

def input_label_columns
  @input_label_columns
end

#l1_regularizationFloat

L1 regularization coefficient. Corresponds to the JSON property l1Regularization

Returns:

  • (Float)


5218
5219
5220
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5218

def l1_regularization
  @l1_regularization
end

#l2_regularizationFloat

L2 regularization coefficient. Corresponds to the JSON property l2Regularization

Returns:

  • (Float)


5223
5224
5225
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5223

def l2_regularization
  @l2_regularization
end

#label_class_weightsHash<String,Float>

Weights associated with each label class, for rebalancing the training data. Only applicable for classification models. Corresponds to the JSON property labelClassWeights

Returns:

  • (Hash<String,Float>)


5229
5230
5231
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5229

def label_class_weights
  @label_class_weights
end

#learn_rateFloat

Learning rate in training. Used only for iterative training algorithms. Corresponds to the JSON property learnRate

Returns:

  • (Float)


5234
5235
5236
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5234

def learn_rate
  @learn_rate
end

#learn_rate_strategyString

The strategy to determine learn rate for the current iteration. Corresponds to the JSON property learnRateStrategy

Returns:

  • (String)


5239
5240
5241
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5239

def learn_rate_strategy
  @learn_rate_strategy
end

#loss_typeString

Type of loss function used during training run. Corresponds to the JSON property lossType

Returns:

  • (String)


5244
5245
5246
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5244

def loss_type
  @loss_type
end

#max_iterationsFixnum

The maximum number of iterations in training. Used only for iterative training algorithms. Corresponds to the JSON property maxIterations

Returns:

  • (Fixnum)


5250
5251
5252
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5250

def max_iterations
  @max_iterations
end

#min_relative_progressFloat

When early_stop is true, stops training when accuracy improvement is less than 'min_relative_progress'. Used only for iterative training algorithms. Corresponds to the JSON property minRelativeProgress

Returns:

  • (Float)


5257
5258
5259
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5257

def min_relative_progress
  @min_relative_progress
end

#model_uriString

[Beta] Google Cloud Storage URI from which the model was imported. Only applicable for imported models. Corresponds to the JSON property modelUri

Returns:

  • (String)


5263
5264
5265
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5263

def model_uri
  @model_uri
end

#num_clustersFixnum

[Beta] Number of clusters for clustering models. Corresponds to the JSON property numClusters

Returns:

  • (Fixnum)


5268
5269
5270
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5268

def num_clusters
  @num_clusters
end

#optimization_strategyString

Optimization strategy for training linear regression models. Corresponds to the JSON property optimizationStrategy

Returns:

  • (String)


5273
5274
5275
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5273

def optimization_strategy
  @optimization_strategy
end

#warm_startBoolean Also known as: warm_start?

Whether to train a model from the last checkpoint. Corresponds to the JSON property warmStart

Returns:

  • (Boolean)


5278
5279
5280
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5278

def warm_start
  @warm_start
end

Instance Method Details

#update!(**args) ⇒ Object

Update properties of this object



5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5286

def update!(**args)
  @data_split_column = args[:data_split_column] if args.key?(:data_split_column)
  @data_split_eval_fraction = args[:data_split_eval_fraction] if args.key?(:data_split_eval_fraction)
  @data_split_method = args[:data_split_method] if args.key?(:data_split_method)
  @distance_type = args[:distance_type] if args.key?(:distance_type)
  @early_stop = args[:early_stop] if args.key?(:early_stop)
  @initial_learn_rate = args[:initial_learn_rate] if args.key?(:initial_learn_rate)
  @input_label_columns = args[:input_label_columns] if args.key?(:input_label_columns)
  @l1_regularization = args[:l1_regularization] if args.key?(:l1_regularization)
  @l2_regularization = args[:l2_regularization] if args.key?(:l2_regularization)
  @label_class_weights = args[:label_class_weights] if args.key?(:label_class_weights)
  @learn_rate = args[:learn_rate] if args.key?(:learn_rate)
  @learn_rate_strategy = args[:learn_rate_strategy] if args.key?(:learn_rate_strategy)
  @loss_type = args[:loss_type] if args.key?(:loss_type)
  @max_iterations = args[:max_iterations] if args.key?(:max_iterations)
  @min_relative_progress = args[:min_relative_progress] if args.key?(:min_relative_progress)
  @model_uri = args[:model_uri] if args.key?(:model_uri)
  @num_clusters = args[:num_clusters] if args.key?(:num_clusters)
  @optimization_strategy = args[:optimization_strategy] if args.key?(:optimization_strategy)
  @warm_start = args[:warm_start] if args.key?(:warm_start)
end