Class: Google::Apis::BigqueryV2::TrainingOptions

Inherits:
Object
  • Object
show all
Includes:
Core::Hashable, Core::JsonObjectSupport
Defined in:
generated/google/apis/bigquery_v2/classes.rb,
generated/google/apis/bigquery_v2/representations.rb,
generated/google/apis/bigquery_v2/representations.rb

Instance Attribute Summary collapse

Instance Method Summary collapse

Methods included from Core::JsonObjectSupport

#to_json

Methods included from Core::Hashable

process_value, #to_h

Constructor Details

#initialize(**args) ⇒ TrainingOptions

Returns a new instance of TrainingOptions



5303
5304
5305
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5303

def initialize(**args)
   update!(**args)
end

Instance Attribute Details

#data_split_columnString

The column to split data with. This column won't be used as a feature.

  1. When data_split_method is CUSTOM, the corresponding column should be boolean. The rows with true value tag are eval data, and the false are training data.
  2. When data_split_method is SEQ, the first DATA_SPLIT_EVAL_FRACTION rows (from smallest to largest) in the corresponding column are used as training data, and the rest are eval data. It respects the order in Orderable data types: https://cloud.google.com/bigquery/docs/reference/standard-sql/data-types#data- type-properties Corresponds to the JSON property dataSplitColumn

Returns:

  • (String)


5198
5199
5200
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5198

def data_split_column
  @data_split_column
end

#data_split_eval_fractionFloat

The fraction of evaluation data over the whole input data. The rest of data will be used as training data. The format should be double. Accurate to two decimal places. Default value is 0.2. Corresponds to the JSON property dataSplitEvalFraction

Returns:

  • (Float)


5206
5207
5208
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5206

def data_split_eval_fraction
  @data_split_eval_fraction
end

#data_split_methodString

The data split type for training and evaluation, e.g. RANDOM. Corresponds to the JSON property dataSplitMethod

Returns:

  • (String)


5211
5212
5213
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5211

def data_split_method
  @data_split_method
end

#distance_typeString

[Beta] Distance type for clustering models. Corresponds to the JSON property distanceType

Returns:

  • (String)


5216
5217
5218
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5216

def distance_type
  @distance_type
end

#early_stopBoolean Also known as: early_stop?

Whether to stop early when the loss doesn't improve significantly any more (compared to min_relative_progress). Used only for iterative training algorithms. Corresponds to the JSON property earlyStop

Returns:

  • (Boolean)


5223
5224
5225
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5223

def early_stop
  @early_stop
end

#initial_learn_rateFloat

Specifies the initial learning rate for the line search learn rate strategy. Corresponds to the JSON property initialLearnRate

Returns:

  • (Float)


5230
5231
5232
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5230

def initial_learn_rate
  @initial_learn_rate
end

#input_label_columnsArray<String>

Name of input label columns in training data. Corresponds to the JSON property inputLabelColumns

Returns:

  • (Array<String>)


5235
5236
5237
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5235

def input_label_columns
  @input_label_columns
end

#l1_regularizationFloat

L1 regularization coefficient. Corresponds to the JSON property l1Regularization

Returns:

  • (Float)


5240
5241
5242
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5240

def l1_regularization
  @l1_regularization
end

#l2_regularizationFloat

L2 regularization coefficient. Corresponds to the JSON property l2Regularization

Returns:

  • (Float)


5245
5246
5247
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5245

def l2_regularization
  @l2_regularization
end

#label_class_weightsHash<String,Float>

Weights associated with each label class, for rebalancing the training data. Only applicable for classification models. Corresponds to the JSON property labelClassWeights

Returns:

  • (Hash<String,Float>)


5251
5252
5253
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5251

def label_class_weights
  @label_class_weights
end

#learn_rateFloat

Learning rate in training. Used only for iterative training algorithms. Corresponds to the JSON property learnRate

Returns:

  • (Float)


5256
5257
5258
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5256

def learn_rate
  @learn_rate
end

#learn_rate_strategyString

The strategy to determine learn rate for the current iteration. Corresponds to the JSON property learnRateStrategy

Returns:

  • (String)


5261
5262
5263
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5261

def learn_rate_strategy
  @learn_rate_strategy
end

#loss_typeString

Type of loss function used during training run. Corresponds to the JSON property lossType

Returns:

  • (String)


5266
5267
5268
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5266

def loss_type
  @loss_type
end

#max_iterationsFixnum

The maximum number of iterations in training. Used only for iterative training algorithms. Corresponds to the JSON property maxIterations

Returns:

  • (Fixnum)


5272
5273
5274
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5272

def max_iterations
  @max_iterations
end

#min_relative_progressFloat

When early_stop is true, stops training when accuracy improvement is less than 'min_relative_progress'. Used only for iterative training algorithms. Corresponds to the JSON property minRelativeProgress

Returns:

  • (Float)


5279
5280
5281
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5279

def min_relative_progress
  @min_relative_progress
end

#model_uriString

[Beta] Google Cloud Storage URI from which the model was imported. Only applicable for imported models. Corresponds to the JSON property modelUri

Returns:

  • (String)


5285
5286
5287
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5285

def model_uri
  @model_uri
end

#num_clustersFixnum

[Beta] Number of clusters for clustering models. Corresponds to the JSON property numClusters

Returns:

  • (Fixnum)


5290
5291
5292
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5290

def num_clusters
  @num_clusters
end

#optimization_strategyString

Optimization strategy for training linear regression models. Corresponds to the JSON property optimizationStrategy

Returns:

  • (String)


5295
5296
5297
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5295

def optimization_strategy
  @optimization_strategy
end

#warm_startBoolean Also known as: warm_start?

Whether to train a model from the last checkpoint. Corresponds to the JSON property warmStart

Returns:

  • (Boolean)


5300
5301
5302
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5300

def warm_start
  @warm_start
end

Instance Method Details

#update!(**args) ⇒ Object

Update properties of this object



5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5308

def update!(**args)
  @data_split_column = args[:data_split_column] if args.key?(:data_split_column)
  @data_split_eval_fraction = args[:data_split_eval_fraction] if args.key?(:data_split_eval_fraction)
  @data_split_method = args[:data_split_method] if args.key?(:data_split_method)
  @distance_type = args[:distance_type] if args.key?(:distance_type)
  @early_stop = args[:early_stop] if args.key?(:early_stop)
  @initial_learn_rate = args[:initial_learn_rate] if args.key?(:initial_learn_rate)
  @input_label_columns = args[:input_label_columns] if args.key?(:input_label_columns)
  @l1_regularization = args[:l1_regularization] if args.key?(:l1_regularization)
  @l2_regularization = args[:l2_regularization] if args.key?(:l2_regularization)
  @label_class_weights = args[:label_class_weights] if args.key?(:label_class_weights)
  @learn_rate = args[:learn_rate] if args.key?(:learn_rate)
  @learn_rate_strategy = args[:learn_rate_strategy] if args.key?(:learn_rate_strategy)
  @loss_type = args[:loss_type] if args.key?(:loss_type)
  @max_iterations = args[:max_iterations] if args.key?(:max_iterations)
  @min_relative_progress = args[:min_relative_progress] if args.key?(:min_relative_progress)
  @model_uri = args[:model_uri] if args.key?(:model_uri)
  @num_clusters = args[:num_clusters] if args.key?(:num_clusters)
  @optimization_strategy = args[:optimization_strategy] if args.key?(:optimization_strategy)
  @warm_start = args[:warm_start] if args.key?(:warm_start)
end