Class: Google::Apis::BigqueryV2::TrainingOptions

Inherits:
Object
  • Object
show all
Includes:
Core::Hashable, Core::JsonObjectSupport
Defined in:
generated/google/apis/bigquery_v2/classes.rb,
generated/google/apis/bigquery_v2/representations.rb,
generated/google/apis/bigquery_v2/representations.rb

Instance Attribute Summary collapse

Instance Method Summary collapse

Methods included from Core::JsonObjectSupport

#to_json

Methods included from Core::Hashable

process_value, #to_h

Constructor Details

#initialize(**args) ⇒ TrainingOptions

Returns a new instance of TrainingOptions



5433
5434
5435
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5433

def initialize(**args)
   update!(**args)
end

Instance Attribute Details

#data_split_columnString

The column to split data with. This column won't be used as a feature.

  1. When data_split_method is CUSTOM, the corresponding column should be boolean. The rows with true value tag are eval data, and the false are training data.
  2. When data_split_method is SEQ, the first DATA_SPLIT_EVAL_FRACTION rows (from smallest to largest) in the corresponding column are used as training data, and the rest are eval data. It respects the order in Orderable data types: https://cloud.google.com/bigquery/docs/reference/standard-sql/data-types#data- type-properties Corresponds to the JSON property dataSplitColumn

Returns:

  • (String)


5317
5318
5319
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5317

def data_split_column
  @data_split_column
end

#data_split_eval_fractionFloat

The fraction of evaluation data over the whole input data. The rest of data will be used as training data. The format should be double. Accurate to two decimal places. Default value is 0.2. Corresponds to the JSON property dataSplitEvalFraction

Returns:

  • (Float)


5325
5326
5327
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5325

def data_split_eval_fraction
  @data_split_eval_fraction
end

#data_split_methodString

The data split type for training and evaluation, e.g. RANDOM. Corresponds to the JSON property dataSplitMethod

Returns:

  • (String)


5330
5331
5332
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5330

def data_split_method
  @data_split_method
end

#distance_typeString

Distance type for clustering models. Corresponds to the JSON property distanceType

Returns:

  • (String)


5335
5336
5337
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5335

def distance_type
  @distance_type
end

#early_stopBoolean Also known as: early_stop?

Whether to stop early when the loss doesn't improve significantly any more (compared to min_relative_progress). Used only for iterative training algorithms. Corresponds to the JSON property earlyStop

Returns:

  • (Boolean)


5342
5343
5344
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5342

def early_stop
  @early_stop
end

#initial_learn_rateFloat

Specifies the initial learning rate for the line search learn rate strategy. Corresponds to the JSON property initialLearnRate

Returns:

  • (Float)


5349
5350
5351
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5349

def initial_learn_rate
  @initial_learn_rate
end

#input_label_columnsArray<String>

Name of input label columns in training data. Corresponds to the JSON property inputLabelColumns

Returns:

  • (Array<String>)


5354
5355
5356
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5354

def input_label_columns
  @input_label_columns
end

#kmeans_initialization_columnString

The column used to provide the initial centroids for kmeans algorithm when kmeans_initialization_method is CUSTOM. Corresponds to the JSON property kmeansInitializationColumn

Returns:

  • (String)


5360
5361
5362
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5360

def kmeans_initialization_column
  @kmeans_initialization_column
end

#kmeans_initialization_methodString

The method used to initialize the centroids for kmeans algorithm. Corresponds to the JSON property kmeansInitializationMethod

Returns:

  • (String)


5365
5366
5367
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5365

def kmeans_initialization_method
  @kmeans_initialization_method
end

#l1_regularizationFloat

L1 regularization coefficient. Corresponds to the JSON property l1Regularization

Returns:

  • (Float)


5370
5371
5372
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5370

def l1_regularization
  @l1_regularization
end

#l2_regularizationFloat

L2 regularization coefficient. Corresponds to the JSON property l2Regularization

Returns:

  • (Float)


5375
5376
5377
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5375

def l2_regularization
  @l2_regularization
end

#label_class_weightsHash<String,Float>

Weights associated with each label class, for rebalancing the training data. Only applicable for classification models. Corresponds to the JSON property labelClassWeights

Returns:

  • (Hash<String,Float>)


5381
5382
5383
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5381

def label_class_weights
  @label_class_weights
end

#learn_rateFloat

Learning rate in training. Used only for iterative training algorithms. Corresponds to the JSON property learnRate

Returns:

  • (Float)


5386
5387
5388
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5386

def learn_rate
  @learn_rate
end

#learn_rate_strategyString

The strategy to determine learn rate for the current iteration. Corresponds to the JSON property learnRateStrategy

Returns:

  • (String)


5391
5392
5393
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5391

def learn_rate_strategy
  @learn_rate_strategy
end

#loss_typeString

Type of loss function used during training run. Corresponds to the JSON property lossType

Returns:

  • (String)


5396
5397
5398
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5396

def loss_type
  @loss_type
end

#max_iterationsFixnum

The maximum number of iterations in training. Used only for iterative training algorithms. Corresponds to the JSON property maxIterations

Returns:

  • (Fixnum)


5402
5403
5404
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5402

def max_iterations
  @max_iterations
end

#min_relative_progressFloat

When early_stop is true, stops training when accuracy improvement is less than 'min_relative_progress'. Used only for iterative training algorithms. Corresponds to the JSON property minRelativeProgress

Returns:

  • (Float)


5409
5410
5411
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5409

def min_relative_progress
  @min_relative_progress
end

#model_uriString

[Beta] Google Cloud Storage URI from which the model was imported. Only applicable for imported models. Corresponds to the JSON property modelUri

Returns:

  • (String)


5415
5416
5417
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5415

def model_uri
  @model_uri
end

#num_clustersFixnum

Number of clusters for clustering models. Corresponds to the JSON property numClusters

Returns:

  • (Fixnum)


5420
5421
5422
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5420

def num_clusters
  @num_clusters
end

#optimization_strategyString

Optimization strategy for training linear regression models. Corresponds to the JSON property optimizationStrategy

Returns:

  • (String)


5425
5426
5427
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5425

def optimization_strategy
  @optimization_strategy
end

#warm_startBoolean Also known as: warm_start?

Whether to train a model from the last checkpoint. Corresponds to the JSON property warmStart

Returns:

  • (Boolean)


5430
5431
5432
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5430

def warm_start
  @warm_start
end

Instance Method Details

#update!(**args) ⇒ Object

Update properties of this object



5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5438

def update!(**args)
  @data_split_column = args[:data_split_column] if args.key?(:data_split_column)
  @data_split_eval_fraction = args[:data_split_eval_fraction] if args.key?(:data_split_eval_fraction)
  @data_split_method = args[:data_split_method] if args.key?(:data_split_method)
  @distance_type = args[:distance_type] if args.key?(:distance_type)
  @early_stop = args[:early_stop] if args.key?(:early_stop)
  @initial_learn_rate = args[:initial_learn_rate] if args.key?(:initial_learn_rate)
  @input_label_columns = args[:input_label_columns] if args.key?(:input_label_columns)
  @kmeans_initialization_column = args[:kmeans_initialization_column] if args.key?(:kmeans_initialization_column)
  @kmeans_initialization_method = args[:kmeans_initialization_method] if args.key?(:kmeans_initialization_method)
  @l1_regularization = args[:l1_regularization] if args.key?(:l1_regularization)
  @l2_regularization = args[:l2_regularization] if args.key?(:l2_regularization)
  @label_class_weights = args[:label_class_weights] if args.key?(:label_class_weights)
  @learn_rate = args[:learn_rate] if args.key?(:learn_rate)
  @learn_rate_strategy = args[:learn_rate_strategy] if args.key?(:learn_rate_strategy)
  @loss_type = args[:loss_type] if args.key?(:loss_type)
  @max_iterations = args[:max_iterations] if args.key?(:max_iterations)
  @min_relative_progress = args[:min_relative_progress] if args.key?(:min_relative_progress)
  @model_uri = args[:model_uri] if args.key?(:model_uri)
  @num_clusters = args[:num_clusters] if args.key?(:num_clusters)
  @optimization_strategy = args[:optimization_strategy] if args.key?(:optimization_strategy)
  @warm_start = args[:warm_start] if args.key?(:warm_start)
end