Class: Google::Apis::BigqueryV2::TrainingOptions
- Inherits:
-
Object
- Object
- Google::Apis::BigqueryV2::TrainingOptions
- Includes:
- Core::Hashable, Core::JsonObjectSupport
- Defined in:
- generated/google/apis/bigquery_v2/classes.rb,
generated/google/apis/bigquery_v2/representations.rb,
generated/google/apis/bigquery_v2/representations.rb
Instance Attribute Summary collapse
-
#data_split_column ⇒ String
The column to split data with.
-
#data_split_eval_fraction ⇒ Float
The fraction of evaluation data over the whole input data.
-
#data_split_method ⇒ String
The data split type for training and evaluation, e.g.
-
#distance_type ⇒ String
Distance type for clustering models.
-
#early_stop ⇒ Boolean
(also: #early_stop?)
Whether to stop early when the loss doesn't improve significantly any more (compared to min_relative_progress).
-
#initial_learn_rate ⇒ Float
Specifies the initial learning rate for the line search learn rate strategy.
-
#input_label_columns ⇒ Array<String>
Name of input label columns in training data.
-
#kmeans_initialization_column ⇒ String
The column used to provide the initial centroids for kmeans algorithm when kmeans_initialization_method is CUSTOM.
-
#kmeans_initialization_method ⇒ String
The method used to initialize the centroids for kmeans algorithm.
-
#l1_regularization ⇒ Float
L1 regularization coefficient.
-
#l2_regularization ⇒ Float
L2 regularization coefficient.
-
#label_class_weights ⇒ Hash<String,Float>
Weights associated with each label class, for rebalancing the training data.
-
#learn_rate ⇒ Float
Learning rate in training.
-
#learn_rate_strategy ⇒ String
The strategy to determine learn rate for the current iteration.
-
#loss_type ⇒ String
Type of loss function used during training run.
-
#max_iterations ⇒ Fixnum
The maximum number of iterations in training.
-
#min_relative_progress ⇒ Float
When early_stop is true, stops training when accuracy improvement is less than 'min_relative_progress'.
-
#model_uri ⇒ String
[Beta] Google Cloud Storage URI from which the model was imported.
-
#num_clusters ⇒ Fixnum
Number of clusters for clustering models.
-
#optimization_strategy ⇒ String
Optimization strategy for training linear regression models.
-
#warm_start ⇒ Boolean
(also: #warm_start?)
Whether to train a model from the last checkpoint.
Instance Method Summary collapse
-
#initialize(**args) ⇒ TrainingOptions
constructor
A new instance of TrainingOptions.
-
#update!(**args) ⇒ Object
Update properties of this object.
Methods included from Core::JsonObjectSupport
Methods included from Core::Hashable
Constructor Details
#initialize(**args) ⇒ TrainingOptions
Returns a new instance of TrainingOptions
5433 5434 5435 |
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5433 def initialize(**args) update!(**args) end |
Instance Attribute Details
#data_split_column ⇒ String
The column to split data with. This column won't be used as a feature.
- When data_split_method is CUSTOM, the corresponding column should be boolean. The rows with true value tag are eval data, and the false are training data.
- When data_split_method is SEQ, the first DATA_SPLIT_EVAL_FRACTION
rows (from smallest to largest) in the corresponding column are used
as training data, and the rest are eval data. It respects the order
in Orderable data types:
https://cloud.google.com/bigquery/docs/reference/standard-sql/data-types#data-
type-properties
Corresponds to the JSON property
dataSplitColumn
5317 5318 5319 |
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5317 def data_split_column @data_split_column end |
#data_split_eval_fraction ⇒ Float
The fraction of evaluation data over the whole input data. The rest
of data will be used as training data. The format should be double.
Accurate to two decimal places.
Default value is 0.2.
Corresponds to the JSON property dataSplitEvalFraction
5325 5326 5327 |
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5325 def data_split_eval_fraction @data_split_eval_fraction end |
#data_split_method ⇒ String
The data split type for training and evaluation, e.g. RANDOM.
Corresponds to the JSON property dataSplitMethod
5330 5331 5332 |
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5330 def data_split_method @data_split_method end |
#distance_type ⇒ String
Distance type for clustering models.
Corresponds to the JSON property distanceType
5335 5336 5337 |
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5335 def distance_type @distance_type end |
#early_stop ⇒ Boolean Also known as: early_stop?
Whether to stop early when the loss doesn't improve significantly
any more (compared to min_relative_progress). Used only for iterative
training algorithms.
Corresponds to the JSON property earlyStop
5342 5343 5344 |
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5342 def early_stop @early_stop end |
#initial_learn_rate ⇒ Float
Specifies the initial learning rate for the line search learn rate
strategy.
Corresponds to the JSON property initialLearnRate
5349 5350 5351 |
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5349 def initial_learn_rate @initial_learn_rate end |
#input_label_columns ⇒ Array<String>
Name of input label columns in training data.
Corresponds to the JSON property inputLabelColumns
5354 5355 5356 |
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5354 def input_label_columns @input_label_columns end |
#kmeans_initialization_column ⇒ String
The column used to provide the initial centroids for kmeans algorithm
when kmeans_initialization_method is CUSTOM.
Corresponds to the JSON property kmeansInitializationColumn
5360 5361 5362 |
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5360 def kmeans_initialization_column @kmeans_initialization_column end |
#kmeans_initialization_method ⇒ String
The method used to initialize the centroids for kmeans algorithm.
Corresponds to the JSON property kmeansInitializationMethod
5365 5366 5367 |
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5365 def kmeans_initialization_method @kmeans_initialization_method end |
#l1_regularization ⇒ Float
L1 regularization coefficient.
Corresponds to the JSON property l1Regularization
5370 5371 5372 |
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5370 def l1_regularization @l1_regularization end |
#l2_regularization ⇒ Float
L2 regularization coefficient.
Corresponds to the JSON property l2Regularization
5375 5376 5377 |
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5375 def l2_regularization @l2_regularization end |
#label_class_weights ⇒ Hash<String,Float>
Weights associated with each label class, for rebalancing the
training data. Only applicable for classification models.
Corresponds to the JSON property labelClassWeights
5381 5382 5383 |
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5381 def label_class_weights @label_class_weights end |
#learn_rate ⇒ Float
Learning rate in training. Used only for iterative training algorithms.
Corresponds to the JSON property learnRate
5386 5387 5388 |
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5386 def learn_rate @learn_rate end |
#learn_rate_strategy ⇒ String
The strategy to determine learn rate for the current iteration.
Corresponds to the JSON property learnRateStrategy
5391 5392 5393 |
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5391 def learn_rate_strategy @learn_rate_strategy end |
#loss_type ⇒ String
Type of loss function used during training run.
Corresponds to the JSON property lossType
5396 5397 5398 |
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5396 def loss_type @loss_type end |
#max_iterations ⇒ Fixnum
The maximum number of iterations in training. Used only for iterative
training algorithms.
Corresponds to the JSON property maxIterations
5402 5403 5404 |
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5402 def max_iterations @max_iterations end |
#min_relative_progress ⇒ Float
When early_stop is true, stops training when accuracy improvement is
less than 'min_relative_progress'. Used only for iterative training
algorithms.
Corresponds to the JSON property minRelativeProgress
5409 5410 5411 |
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5409 def min_relative_progress @min_relative_progress end |
#model_uri ⇒ String
[Beta] Google Cloud Storage URI from which the model was imported. Only
applicable for imported models.
Corresponds to the JSON property modelUri
5415 5416 5417 |
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5415 def model_uri @model_uri end |
#num_clusters ⇒ Fixnum
Number of clusters for clustering models.
Corresponds to the JSON property numClusters
5420 5421 5422 |
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5420 def num_clusters @num_clusters end |
#optimization_strategy ⇒ String
Optimization strategy for training linear regression models.
Corresponds to the JSON property optimizationStrategy
5425 5426 5427 |
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5425 def optimization_strategy @optimization_strategy end |
#warm_start ⇒ Boolean Also known as: warm_start?
Whether to train a model from the last checkpoint.
Corresponds to the JSON property warmStart
5430 5431 5432 |
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5430 def warm_start @warm_start end |
Instance Method Details
#update!(**args) ⇒ Object
Update properties of this object
5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 |
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5438 def update!(**args) @data_split_column = args[:data_split_column] if args.key?(:data_split_column) @data_split_eval_fraction = args[:data_split_eval_fraction] if args.key?(:data_split_eval_fraction) @data_split_method = args[:data_split_method] if args.key?(:data_split_method) @distance_type = args[:distance_type] if args.key?(:distance_type) @early_stop = args[:early_stop] if args.key?(:early_stop) @initial_learn_rate = args[:initial_learn_rate] if args.key?(:initial_learn_rate) @input_label_columns = args[:input_label_columns] if args.key?(:input_label_columns) @kmeans_initialization_column = args[:kmeans_initialization_column] if args.key?(:kmeans_initialization_column) @kmeans_initialization_method = args[:kmeans_initialization_method] if args.key?(:kmeans_initialization_method) @l1_regularization = args[:l1_regularization] if args.key?(:l1_regularization) @l2_regularization = args[:l2_regularization] if args.key?(:l2_regularization) @label_class_weights = args[:label_class_weights] if args.key?(:label_class_weights) @learn_rate = args[:learn_rate] if args.key?(:learn_rate) @learn_rate_strategy = args[:learn_rate_strategy] if args.key?(:learn_rate_strategy) @loss_type = args[:loss_type] if args.key?(:loss_type) @max_iterations = args[:max_iterations] if args.key?(:max_iterations) @min_relative_progress = args[:min_relative_progress] if args.key?(:min_relative_progress) @model_uri = args[:model_uri] if args.key?(:model_uri) @num_clusters = args[:num_clusters] if args.key?(:num_clusters) @optimization_strategy = args[:optimization_strategy] if args.key?(:optimization_strategy) @warm_start = args[:warm_start] if args.key?(:warm_start) end |