Class: Google::Apis::BigqueryV2::TrainingOptions
- Inherits:
-
Object
- Object
- Google::Apis::BigqueryV2::TrainingOptions
- Includes:
- Core::Hashable, Core::JsonObjectSupport
- Defined in:
- generated/google/apis/bigquery_v2/classes.rb,
generated/google/apis/bigquery_v2/representations.rb,
generated/google/apis/bigquery_v2/representations.rb
Instance Attribute Summary collapse
-
#data_split_column ⇒ String
The column to split data with.
-
#data_split_eval_fraction ⇒ Float
The fraction of evaluation data over the whole input data.
-
#data_split_method ⇒ String
The data split type for training and evaluation, e.g.
-
#distance_type ⇒ String
Distance type for clustering models.
-
#early_stop ⇒ Boolean
(also: #early_stop?)
Whether to stop early when the loss doesn't improve significantly any more (compared to min_relative_progress).
-
#initial_learn_rate ⇒ Float
Specifies the initial learning rate for the line search learn rate strategy.
-
#input_label_columns ⇒ Array<String>
Name of input label columns in training data.
-
#kmeans_initialization_column ⇒ String
The column used to provide the initial centroids for kmeans algorithm when kmeans_initialization_method is CUSTOM.
-
#kmeans_initialization_method ⇒ String
The method used to initialize the centroids for kmeans algorithm.
-
#l1_regularization ⇒ Float
L1 regularization coefficient.
-
#l2_regularization ⇒ Float
L2 regularization coefficient.
-
#label_class_weights ⇒ Hash<String,Float>
Weights associated with each label class, for rebalancing the training data.
-
#learn_rate ⇒ Float
Learning rate in training.
-
#learn_rate_strategy ⇒ String
The strategy to determine learn rate for the current iteration.
-
#loss_type ⇒ String
Type of loss function used during training run.
-
#max_iterations ⇒ Fixnum
The maximum number of iterations in training.
-
#min_relative_progress ⇒ Float
When early_stop is true, stops training when accuracy improvement is less than 'min_relative_progress'.
-
#model_uri ⇒ String
[Beta] Google Cloud Storage URI from which the model was imported.
-
#num_clusters ⇒ Fixnum
Number of clusters for clustering models.
-
#optimization_strategy ⇒ String
Optimization strategy for training linear regression models.
-
#warm_start ⇒ Boolean
(also: #warm_start?)
Whether to train a model from the last checkpoint.
Instance Method Summary collapse
-
#initialize(**args) ⇒ TrainingOptions
constructor
A new instance of TrainingOptions.
-
#update!(**args) ⇒ Object
Update properties of this object.
Methods included from Core::JsonObjectSupport
Methods included from Core::Hashable
Constructor Details
#initialize(**args) ⇒ TrainingOptions
Returns a new instance of TrainingOptions
5709 5710 5711 |
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5709 def initialize(**args) update!(**args) end |
Instance Attribute Details
#data_split_column ⇒ String
The column to split data with. This column won't be used as a feature.
- When data_split_method is CUSTOM, the corresponding column should be boolean. The rows with true value tag are eval data, and the false are training data.
- When data_split_method is SEQ, the first DATA_SPLIT_EVAL_FRACTION
rows (from smallest to largest) in the corresponding column are used
as training data, and the rest are eval data. It respects the order
in Orderable data types:
https://cloud.google.com/bigquery/docs/reference/standard-sql/data-types#data-
type-properties
Corresponds to the JSON property
dataSplitColumn
5593 5594 5595 |
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5593 def data_split_column @data_split_column end |
#data_split_eval_fraction ⇒ Float
The fraction of evaluation data over the whole input data. The rest
of data will be used as training data. The format should be double.
Accurate to two decimal places.
Default value is 0.2.
Corresponds to the JSON property dataSplitEvalFraction
5601 5602 5603 |
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5601 def data_split_eval_fraction @data_split_eval_fraction end |
#data_split_method ⇒ String
The data split type for training and evaluation, e.g. RANDOM.
Corresponds to the JSON property dataSplitMethod
5606 5607 5608 |
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5606 def data_split_method @data_split_method end |
#distance_type ⇒ String
Distance type for clustering models.
Corresponds to the JSON property distanceType
5611 5612 5613 |
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5611 def distance_type @distance_type end |
#early_stop ⇒ Boolean Also known as: early_stop?
Whether to stop early when the loss doesn't improve significantly
any more (compared to min_relative_progress). Used only for iterative
training algorithms.
Corresponds to the JSON property earlyStop
5618 5619 5620 |
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5618 def early_stop @early_stop end |
#initial_learn_rate ⇒ Float
Specifies the initial learning rate for the line search learn rate
strategy.
Corresponds to the JSON property initialLearnRate
5625 5626 5627 |
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5625 def initial_learn_rate @initial_learn_rate end |
#input_label_columns ⇒ Array<String>
Name of input label columns in training data.
Corresponds to the JSON property inputLabelColumns
5630 5631 5632 |
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5630 def input_label_columns @input_label_columns end |
#kmeans_initialization_column ⇒ String
The column used to provide the initial centroids for kmeans algorithm
when kmeans_initialization_method is CUSTOM.
Corresponds to the JSON property kmeansInitializationColumn
5636 5637 5638 |
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5636 def kmeans_initialization_column @kmeans_initialization_column end |
#kmeans_initialization_method ⇒ String
The method used to initialize the centroids for kmeans algorithm.
Corresponds to the JSON property kmeansInitializationMethod
5641 5642 5643 |
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5641 def kmeans_initialization_method @kmeans_initialization_method end |
#l1_regularization ⇒ Float
L1 regularization coefficient.
Corresponds to the JSON property l1Regularization
5646 5647 5648 |
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5646 def l1_regularization @l1_regularization end |
#l2_regularization ⇒ Float
L2 regularization coefficient.
Corresponds to the JSON property l2Regularization
5651 5652 5653 |
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5651 def l2_regularization @l2_regularization end |
#label_class_weights ⇒ Hash<String,Float>
Weights associated with each label class, for rebalancing the
training data. Only applicable for classification models.
Corresponds to the JSON property labelClassWeights
5657 5658 5659 |
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5657 def label_class_weights @label_class_weights end |
#learn_rate ⇒ Float
Learning rate in training. Used only for iterative training algorithms.
Corresponds to the JSON property learnRate
5662 5663 5664 |
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5662 def learn_rate @learn_rate end |
#learn_rate_strategy ⇒ String
The strategy to determine learn rate for the current iteration.
Corresponds to the JSON property learnRateStrategy
5667 5668 5669 |
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5667 def learn_rate_strategy @learn_rate_strategy end |
#loss_type ⇒ String
Type of loss function used during training run.
Corresponds to the JSON property lossType
5672 5673 5674 |
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5672 def loss_type @loss_type end |
#max_iterations ⇒ Fixnum
The maximum number of iterations in training. Used only for iterative
training algorithms.
Corresponds to the JSON property maxIterations
5678 5679 5680 |
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5678 def max_iterations @max_iterations end |
#min_relative_progress ⇒ Float
When early_stop is true, stops training when accuracy improvement is
less than 'min_relative_progress'. Used only for iterative training
algorithms.
Corresponds to the JSON property minRelativeProgress
5685 5686 5687 |
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5685 def min_relative_progress @min_relative_progress end |
#model_uri ⇒ String
[Beta] Google Cloud Storage URI from which the model was imported. Only
applicable for imported models.
Corresponds to the JSON property modelUri
5691 5692 5693 |
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5691 def model_uri @model_uri end |
#num_clusters ⇒ Fixnum
Number of clusters for clustering models.
Corresponds to the JSON property numClusters
5696 5697 5698 |
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5696 def num_clusters @num_clusters end |
#optimization_strategy ⇒ String
Optimization strategy for training linear regression models.
Corresponds to the JSON property optimizationStrategy
5701 5702 5703 |
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5701 def optimization_strategy @optimization_strategy end |
#warm_start ⇒ Boolean Also known as: warm_start?
Whether to train a model from the last checkpoint.
Corresponds to the JSON property warmStart
5706 5707 5708 |
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5706 def warm_start @warm_start end |
Instance Method Details
#update!(**args) ⇒ Object
Update properties of this object
5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 |
# File 'generated/google/apis/bigquery_v2/classes.rb', line 5714 def update!(**args) @data_split_column = args[:data_split_column] if args.key?(:data_split_column) @data_split_eval_fraction = args[:data_split_eval_fraction] if args.key?(:data_split_eval_fraction) @data_split_method = args[:data_split_method] if args.key?(:data_split_method) @distance_type = args[:distance_type] if args.key?(:distance_type) @early_stop = args[:early_stop] if args.key?(:early_stop) @initial_learn_rate = args[:initial_learn_rate] if args.key?(:initial_learn_rate) @input_label_columns = args[:input_label_columns] if args.key?(:input_label_columns) @kmeans_initialization_column = args[:kmeans_initialization_column] if args.key?(:kmeans_initialization_column) @kmeans_initialization_method = args[:kmeans_initialization_method] if args.key?(:kmeans_initialization_method) @l1_regularization = args[:l1_regularization] if args.key?(:l1_regularization) @l2_regularization = args[:l2_regularization] if args.key?(:l2_regularization) @label_class_weights = args[:label_class_weights] if args.key?(:label_class_weights) @learn_rate = args[:learn_rate] if args.key?(:learn_rate) @learn_rate_strategy = args[:learn_rate_strategy] if args.key?(:learn_rate_strategy) @loss_type = args[:loss_type] if args.key?(:loss_type) @max_iterations = args[:max_iterations] if args.key?(:max_iterations) @min_relative_progress = args[:min_relative_progress] if args.key?(:min_relative_progress) @model_uri = args[:model_uri] if args.key?(:model_uri) @num_clusters = args[:num_clusters] if args.key?(:num_clusters) @optimization_strategy = args[:optimization_strategy] if args.key?(:optimization_strategy) @warm_start = args[:warm_start] if args.key?(:warm_start) end |