Class: Google::Apis::MlV1::GoogleCloudMlV1Version
- Inherits:
-
Object
- Object
- Google::Apis::MlV1::GoogleCloudMlV1Version
- Includes:
- Core::Hashable, Core::JsonObjectSupport
- Defined in:
- generated/google/apis/ml_v1/classes.rb,
generated/google/apis/ml_v1/representations.rb,
generated/google/apis/ml_v1/representations.rb
Overview
Represents a version of the model. Each version is a trained model deployed in the cloud, ready to handle prediction requests. A model can have multiple versions. You can get information about all of the versions of a given model by calling projects.models.versions.list.
Instance Attribute Summary collapse
-
#accelerator_config ⇒ Google::Apis::MlV1::GoogleCloudMlV1AcceleratorConfig
Represents a hardware accelerator request config.
-
#auto_scaling ⇒ Google::Apis::MlV1::GoogleCloudMlV1AutoScaling
Options for automatically scaling a model.
-
#create_time ⇒ String
Output only.
-
#deployment_uri ⇒ String
Required.
-
#description ⇒ String
Optional.
-
#error_message ⇒ String
Output only.
-
#etag ⇒ String
etag
is used for optimistic concurrency control as a way to help prevent simultaneous updates of a model from overwriting each other. -
#framework ⇒ String
Optional.
-
#is_default ⇒ Boolean
(also: #is_default?)
Output only.
-
#labels ⇒ Hash<String,String>
Optional.
-
#last_use_time ⇒ String
Output only.
-
#machine_type ⇒ String
Optional.
-
#manual_scaling ⇒ Google::Apis::MlV1::GoogleCloudMlV1ManualScaling
Options for manually scaling a model.
-
#name ⇒ String
Required.
-
#package_uris ⇒ Array<String>
Optional.
-
#prediction_class ⇒ String
Optional.
-
#python_version ⇒ String
Optional.
-
#request_logging_config ⇒ Google::Apis::MlV1::GoogleCloudMlV1RequestLoggingConfig
Configuration for logging request-response pairs to a BigQuery table.
-
#runtime_version ⇒ String
Optional.
-
#service_account ⇒ String
Optional.
-
#state ⇒ String
Output only.
Instance Method Summary collapse
-
#initialize(**args) ⇒ GoogleCloudMlV1Version
constructor
A new instance of GoogleCloudMlV1Version.
-
#update!(**args) ⇒ Object
Update properties of this object.
Methods included from Core::JsonObjectSupport
Methods included from Core::Hashable
Constructor Details
#initialize(**args) ⇒ GoogleCloudMlV1Version
Returns a new instance of GoogleCloudMlV1Version
1859 1860 1861 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1859 def initialize(**args) update!(**args) end |
Instance Attribute Details
#accelerator_config ⇒ Google::Apis::MlV1::GoogleCloudMlV1AcceleratorConfig
Represents a hardware accelerator request config.
Note that the AcceleratorConfig could be used in both Jobs and Versions.
Corresponds to the JSON property acceleratorConfig
1642 1643 1644 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1642 def accelerator_config @accelerator_config end |
#auto_scaling ⇒ Google::Apis::MlV1::GoogleCloudMlV1AutoScaling
Options for automatically scaling a model.
Corresponds to the JSON property autoScaling
1647 1648 1649 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1647 def auto_scaling @auto_scaling end |
#create_time ⇒ String
Output only. The time the version was created.
Corresponds to the JSON property createTime
1652 1653 1654 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1652 def create_time @create_time end |
#deployment_uri ⇒ String
Required. The Cloud Storage location of the trained model used to
create the version. See the
guide to model
deployment for more
information.
When passing Version to
projects.models.versions.create
the model service uses the specified location as the source of the model.
Once deployed, the model version is hosted by the prediction service, so
this location is useful only as a historical record.
The total number of model files can't exceed 1000.
Corresponds to the JSON property deploymentUri
1668 1669 1670 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1668 def deployment_uri @deployment_uri end |
#description ⇒ String
Optional. The description specified for the version when it was created.
Corresponds to the JSON property description
1673 1674 1675 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1673 def description @description end |
#error_message ⇒ String
Output only. The details of a failure or a cancellation.
Corresponds to the JSON property errorMessage
1678 1679 1680 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1678 def @error_message end |
#etag ⇒ String
etag
is used for optimistic concurrency control as a way to help
prevent simultaneous updates of a model from overwriting each other.
It is strongly suggested that systems make use of the etag
in the
read-modify-write cycle to perform model updates in order to avoid race
conditions: An etag
is returned in the response to GetVersion
, and
systems are expected to put that etag in the request to UpdateVersion
to
ensure that their change will be applied to the model as intended.
Corresponds to the JSON property etag
NOTE: Values are automatically base64 encoded/decoded in the client library.
1690 1691 1692 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1690 def etag @etag end |
#framework ⇒ String
Optional. The machine learning framework AI Platform uses to train
this version of the model. Valid values are TENSORFLOW
, SCIKIT_LEARN
,
XGBOOST
. If you do not specify a framework, AI Platform
will analyze files in the deployment_uri to determine a framework. If you
choose SCIKIT_LEARN
or XGBOOST
, you must also set the runtime version
of the model to 1.4 or greater.
Do not specify a framework if you're deploying a custom
prediction routine.
Corresponds to the JSON property framework
1702 1703 1704 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1702 def framework @framework end |
#is_default ⇒ Boolean Also known as: is_default?
Output only. If true, this version will be used to handle prediction
requests that do not specify a version.
You can change the default version by calling
projects.methods.versions.setDefault.
Corresponds to the JSON property isDefault
1711 1712 1713 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1711 def is_default @is_default end |
#labels ⇒ Hash<String,String>
Optional. One or more labels that you can add, to organize your model
versions. Each label is a key-value pair, where both the key and the value
are arbitrary strings that you supply.
For more information, see the documentation on
using labels.
Corresponds to the JSON property labels
1721 1722 1723 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1721 def labels @labels end |
#last_use_time ⇒ String
Output only. The time the version was last used for prediction.
Corresponds to the JSON property lastUseTime
1726 1727 1728 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1726 def last_use_time @last_use_time end |
#machine_type ⇒ String
Optional. The type of machine on which to serve the model. Currently only applies to online prediction service.
- mls1-c1-m2
- The default machine type, with 1 core and 2 GB RAM. The deprecated name for this machine type is "mls1-highmem-1".
- mls1-c4-m2
- In Beta. This machine type has 4 cores and 2 GB RAM. The deprecated name for this machine type is "mls1-highcpu-4".
Corresponds to the JSON property machineType
1744 1745 1746 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1744 def machine_type @machine_type end |
#manual_scaling ⇒ Google::Apis::MlV1::GoogleCloudMlV1ManualScaling
Options for manually scaling a model.
Corresponds to the JSON property manualScaling
1749 1750 1751 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1749 def manual_scaling @manual_scaling end |
#name ⇒ String
Required. The name specified for the version when it was created.
The version name must be unique within the model it is created in.
Corresponds to the JSON property name
1755 1756 1757 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1755 def name @name end |
#package_uris ⇒ Array<String>
Optional. Cloud Storage paths (gs://…
) of packages for custom
prediction routines
or scikit-learn pipelines with custom
code.
For a custom prediction routine, one of these packages must contain your
Predictor class (see
predictionClass
). Additionally,
include any dependencies used by your Predictor or scikit-learn pipeline
uses that are not already included in your selected runtime
version.
If you specify this field, you must also set
runtimeVersion
to 1.4 or greater.
Corresponds to the JSON property packageUris
1771 1772 1773 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1771 def package_uris @package_uris end |
#prediction_class ⇒ String
Optional. The fully qualified name
(module_name.class_name) of a class that implements
the Predictor interface described in this reference field. The module
containing this class should be included in a package provided to the
packageUris
field.
Specify this field if and only if you are deploying a custom prediction
routine (beta).
If you specify this field, you must set
runtimeVersion
to 1.4 or greater.
The following code sample provides the Predictor interface:
class Predictor(object):
"""Interface for constructing custom predictors."""
def predict(self, instances, **kwargs):
"""Performs custom prediction.
Instances are the decoded values from the request. They have already
been deserialized from JSON.
Args:
instances: A list of prediction input instances.
**kwargs: A dictionary of keyword args provided as additional
fields on the predict request body.
Returns:
A list of outputs containing the prediction results. This list must
be JSON serializable.
"""
raise NotImplementedError()
def from_path(cls, model_dir):
"""Creates an instance of Predictor using the given path.
Loading of the predictor should be done in this method.
Args:
model_dir: The local directory that contains the exported model
file along with any additional files uploaded when creating the
version resource.
Returns:
An instance implementing this Predictor class.
"""
raise NotImplementedError()
Learn more about the Predictor interface and custom prediction
routines.
Corresponds to the JSON property predictionClass
1816 1817 1818 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1816 def prediction_class @prediction_class end |
#python_version ⇒ String
Optional. The version of Python used in prediction. If not set, the default
version is '2.7'. Python '3.5' is available when runtime_version
is set
to '1.4' and above. Python '2.7' works with all supported runtime versions.
Corresponds to the JSON property pythonVersion
1823 1824 1825 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1823 def python_version @python_version end |
#request_logging_config ⇒ Google::Apis::MlV1::GoogleCloudMlV1RequestLoggingConfig
Configuration for logging request-response pairs to a BigQuery table.
Online prediction requests to a model version and the responses to these
requests are converted to raw strings and saved to the specified BigQuery
table. Logging is constrained by BigQuery quotas and
limits. If your project exceeds BigQuery quotas or limits,
AI Platform Prediction does not log request-response pairs, but it continues
to serve predictions.
If you are using continuous
evaluation, you do not need to
specify this configuration manually. Setting up continuous evaluation
automatically enables logging of request-response pairs.
Corresponds to the JSON property requestLoggingConfig
1838 1839 1840 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1838 def request_logging_config @request_logging_config end |
#runtime_version ⇒ String
Optional. The AI Platform runtime version to use for this deployment.
If not set, AI Platform uses the default stable version, 1.0. For more
information, see the
runtime version list and
how to manage runtime versions.
Corresponds to the JSON property runtimeVersion
1847 1848 1849 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1847 def runtime_version @runtime_version end |
#service_account ⇒ String
Optional. Specifies the service account for resource access control.
Corresponds to the JSON property serviceAccount
1852 1853 1854 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1852 def service_account @service_account end |
#state ⇒ String
Output only. The state of a version.
Corresponds to the JSON property state
1857 1858 1859 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1857 def state @state end |
Instance Method Details
#update!(**args) ⇒ Object
Update properties of this object
1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 |
# File 'generated/google/apis/ml_v1/classes.rb', line 1864 def update!(**args) @accelerator_config = args[:accelerator_config] if args.key?(:accelerator_config) @auto_scaling = args[:auto_scaling] if args.key?(:auto_scaling) @create_time = args[:create_time] if args.key?(:create_time) @deployment_uri = args[:deployment_uri] if args.key?(:deployment_uri) @description = args[:description] if args.key?(:description) @error_message = args[:error_message] if args.key?(:error_message) @etag = args[:etag] if args.key?(:etag) @framework = args[:framework] if args.key?(:framework) @is_default = args[:is_default] if args.key?(:is_default) @labels = args[:labels] if args.key?(:labels) @last_use_time = args[:last_use_time] if args.key?(:last_use_time) @machine_type = args[:machine_type] if args.key?(:machine_type) @manual_scaling = args[:manual_scaling] if args.key?(:manual_scaling) @name = args[:name] if args.key?(:name) @package_uris = args[:package_uris] if args.key?(:package_uris) @prediction_class = args[:prediction_class] if args.key?(:prediction_class) @python_version = args[:python_version] if args.key?(:python_version) @request_logging_config = args[:request_logging_config] if args.key?(:request_logging_config) @runtime_version = args[:runtime_version] if args.key?(:runtime_version) @service_account = args[:service_account] if args.key?(:service_account) @state = args[:state] if args.key?(:state) end |