Class: Google::Apis::MlV1::GoogleCloudMlV1TrainingInput

Inherits:
Object
  • Object
show all
Includes:
Core::Hashable, Core::JsonObjectSupport
Defined in:
generated/google/apis/ml_v1/classes.rb,
generated/google/apis/ml_v1/representations.rb,
generated/google/apis/ml_v1/representations.rb

Overview

Represents input parameters for a training job. When using the gcloud command to submit your training job, you can specify the input parameters as command-line arguments and/or in a YAML configuration file referenced from the --config command-line argument. For details, see the guide to submitting a training job.

Instance Attribute Summary collapse

Instance Method Summary collapse

Methods included from Core::JsonObjectSupport

#to_json

Methods included from Core::Hashable

process_value, #to_h

Constructor Details

#initialize(**args) ⇒ GoogleCloudMlV1TrainingInput

Returns a new instance of GoogleCloudMlV1TrainingInput.



2501
2502
2503
# File 'generated/google/apis/ml_v1/classes.rb', line 2501

def initialize(**args)
   update!(**args)
end

Instance Attribute Details

#argsArray<String>

Optional. Command line arguments to pass to the program. Corresponds to the JSON property args

Returns:

  • (Array<String>)


2306
2307
2308
# File 'generated/google/apis/ml_v1/classes.rb', line 2306

def args
  @args
end

#encryption_configGoogle::Apis::MlV1::GoogleCloudMlV1EncryptionConfig

Represents a custom encryption key configuration that can be applied to a resource. Corresponds to the JSON property encryptionConfig



2312
2313
2314
# File 'generated/google/apis/ml_v1/classes.rb', line 2312

def encryption_config
  @encryption_config
end

#hyperparametersGoogle::Apis::MlV1::GoogleCloudMlV1HyperparameterSpec

Represents a set of hyperparameters to optimize. Corresponds to the JSON property hyperparameters



2317
2318
2319
# File 'generated/google/apis/ml_v1/classes.rb', line 2317

def hyperparameters
  @hyperparameters
end

#job_dirString

Optional. A Google Cloud Storage path in which to store training outputs and other data needed for training. This path is passed to your TensorFlow program as the '--job-dir' command-line argument. The benefit of specifying this field is that Cloud ML validates the path for use in training. Corresponds to the JSON property jobDir

Returns:

  • (String)


2325
2326
2327
# File 'generated/google/apis/ml_v1/classes.rb', line 2325

def job_dir
  @job_dir
end

#master_configGoogle::Apis::MlV1::GoogleCloudMlV1ReplicaConfig

Represents the configuration for a replica in a cluster. Corresponds to the JSON property masterConfig



2330
2331
2332
# File 'generated/google/apis/ml_v1/classes.rb', line 2330

def master_config
  @master_config
end

#master_typeString

Optional. Specifies the type of virtual machine to use for your training job's master worker. You must specify this field when scaleTier is set to CUSTOM. You can use certain Compute Engine machine types directly in this field. The following types are supported:

  • n1-standard-4
  • n1-standard-8
  • n1-standard-16
  • n1-standard-32
  • n1-standard-64
  • n1-standard-96
  • n1-highmem-2
  • n1-highmem-4
  • n1-highmem-8
  • n1-highmem-16
  • n1-highmem-32
  • n1-highmem-64
  • n1-highmem-96
  • n1-highcpu-16
  • n1-highcpu-32
  • n1-highcpu-64
  • n1-highcpu-96 Learn more about using Compute Engine machine types. Alternatively, you can use the following legacy machine types:
  • standard
  • large_model
  • complex_model_s
  • complex_model_m
  • complex_model_l
  • standard_gpu
  • complex_model_m_gpu
  • complex_model_l_gpu
  • standard_p100
  • complex_model_m_p100
  • standard_v100
  • large_model_v100
  • complex_model_m_v100
  • complex_model_l_v100 Learn more about using legacy machine types. Finally, if you want to use a TPU for training, specify cloud_tpu in this field. Learn more about the special configuration options for training with TPUs. Corresponds to the JSON property masterType

Returns:

  • (String)


2379
2380
2381
# File 'generated/google/apis/ml_v1/classes.rb', line 2379

def master_type
  @master_type
end

#package_urisArray<String>

Required. The Google Cloud Storage location of the packages with the training program and any additional dependencies. The maximum number of package URIs is 100. Corresponds to the JSON property packageUris

Returns:

  • (Array<String>)


2386
2387
2388
# File 'generated/google/apis/ml_v1/classes.rb', line 2386

def package_uris
  @package_uris
end

#parameter_server_configGoogle::Apis::MlV1::GoogleCloudMlV1ReplicaConfig

Represents the configuration for a replica in a cluster. Corresponds to the JSON property parameterServerConfig



2391
2392
2393
# File 'generated/google/apis/ml_v1/classes.rb', line 2391

def parameter_server_config
  @parameter_server_config
end

#parameter_server_countFixnum

Optional. The number of parameter server replicas to use for the training job. Each replica in the cluster will be of the type specified in parameter_server_type. This value can only be used when scale_tier is set to CUSTOM.If you set this value, you must also set parameter_server_type. The default value is zero. Corresponds to the JSON property parameterServerCount

Returns:

  • (Fixnum)


2401
2402
2403
# File 'generated/google/apis/ml_v1/classes.rb', line 2401

def parameter_server_count
  @parameter_server_count
end

#parameter_server_typeString

Optional. Specifies the type of virtual machine to use for your training job's parameter server. The supported values are the same as those described in the entry for master_type. This value must be consistent with the category of machine type that masterType uses. In other words, both must be Compute Engine machine types or both must be legacy machine types. This value must be present when scaleTier is set to CUSTOM and parameter_server_count is greater than zero. Corresponds to the JSON property parameterServerType

Returns:

  • (String)


2414
2415
2416
# File 'generated/google/apis/ml_v1/classes.rb', line 2414

def parameter_server_type
  @parameter_server_type
end

#python_moduleString

Required. The Python module name to run after installing the packages. Corresponds to the JSON property pythonModule

Returns:

  • (String)


2419
2420
2421
# File 'generated/google/apis/ml_v1/classes.rb', line 2419

def python_module
  @python_module
end

#python_versionString

Optional. The version of Python used in training. You must either specify this field or specify masterConfig.imageUri. The following Python versions are available:

  • Python '3.7' is available when runtime_version is set to '1.15' or later.
  • Python '3.5' is available when runtime_version is set to a version from '1.4' to '1.14'.
  • Python '2.7' is available when runtime_version is set to '1.15' or earlier. Read more about the Python versions available for each runtime version. Corresponds to the JSON property pythonVersion

Returns:

  • (String)


2434
2435
2436
# File 'generated/google/apis/ml_v1/classes.rb', line 2434

def python_version
  @python_version
end

#regionString

Required. The region to run the training job in. See the available regions for AI Platform Training. Corresponds to the JSON property region

Returns:

  • (String)


2440
2441
2442
# File 'generated/google/apis/ml_v1/classes.rb', line 2440

def region
  @region
end

#runtime_versionString

Optional. The AI Platform runtime version to use for training. You must either specify this field or specify masterConfig.imageUri. For more information, see the runtime version list and learn how to manage runtime versions. Corresponds to the JSON property runtimeVersion

Returns:

  • (String)


2449
2450
2451
# File 'generated/google/apis/ml_v1/classes.rb', line 2449

def runtime_version
  @runtime_version
end

#scale_tierString

Required. Specifies the machine types, the number of replicas for workers and parameter servers. Corresponds to the JSON property scaleTier

Returns:

  • (String)


2455
2456
2457
# File 'generated/google/apis/ml_v1/classes.rb', line 2455

def scale_tier
  @scale_tier
end

#schedulingGoogle::Apis::MlV1::GoogleCloudMlV1Scheduling

All parameters related to scheduling of training jobs. Corresponds to the JSON property scheduling



2460
2461
2462
# File 'generated/google/apis/ml_v1/classes.rb', line 2460

def scheduling
  @scheduling
end

#use_chief_in_tf_configBoolean Also known as: use_chief_in_tf_config?

Optional. Use 'chief' instead of 'master' in TF_CONFIG when Custom Container is used and evaluator is not specified. Defaults to false. Corresponds to the JSON property useChiefInTfConfig

Returns:

  • (Boolean)


2467
2468
2469
# File 'generated/google/apis/ml_v1/classes.rb', line 2467

def use_chief_in_tf_config
  @use_chief_in_tf_config
end

#worker_configGoogle::Apis::MlV1::GoogleCloudMlV1ReplicaConfig

Represents the configuration for a replica in a cluster. Corresponds to the JSON property workerConfig



2473
2474
2475
# File 'generated/google/apis/ml_v1/classes.rb', line 2473

def worker_config
  @worker_config
end

#worker_countFixnum

Optional. The number of worker replicas to use for the training job. Each replica in the cluster will be of the type specified in worker_type. This value can only be used when scale_tier is set to CUSTOM. If you set this value, you must also set worker_type. The default value is zero. Corresponds to the JSON property workerCount

Returns:

  • (Fixnum)


2482
2483
2484
# File 'generated/google/apis/ml_v1/classes.rb', line 2482

def worker_count
  @worker_count
end

#worker_typeString

Optional. Specifies the type of virtual machine to use for your training job's worker nodes. The supported values are the same as those described in the entry for masterType. This value must be consistent with the category of machine type that masterType uses. In other words, both must be Compute Engine machine types or both must be legacy machine types. If you use cloud_tpu for this value, see special instructions for configuring a custom TPU machine. This value must be present when scaleTier is set to CUSTOM and workerCount is greater than zero. Corresponds to the JSON property workerType

Returns:

  • (String)


2499
2500
2501
# File 'generated/google/apis/ml_v1/classes.rb', line 2499

def worker_type
  @worker_type
end

Instance Method Details

#update!(**args) ⇒ Object

Update properties of this object



2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
# File 'generated/google/apis/ml_v1/classes.rb', line 2506

def update!(**args)
  @args = args[:args] if args.key?(:args)
  @encryption_config = args[:encryption_config] if args.key?(:encryption_config)
  @hyperparameters = args[:hyperparameters] if args.key?(:hyperparameters)
  @job_dir = args[:job_dir] if args.key?(:job_dir)
  @master_config = args[:master_config] if args.key?(:master_config)
  @master_type = args[:master_type] if args.key?(:master_type)
  @package_uris = args[:package_uris] if args.key?(:package_uris)
  @parameter_server_config = args[:parameter_server_config] if args.key?(:parameter_server_config)
  @parameter_server_count = args[:parameter_server_count] if args.key?(:parameter_server_count)
  @parameter_server_type = args[:parameter_server_type] if args.key?(:parameter_server_type)
  @python_module = args[:python_module] if args.key?(:python_module)
  @python_version = args[:python_version] if args.key?(:python_version)
  @region = args[:region] if args.key?(:region)
  @runtime_version = args[:runtime_version] if args.key?(:runtime_version)
  @scale_tier = args[:scale_tier] if args.key?(:scale_tier)
  @scheduling = args[:scheduling] if args.key?(:scheduling)
  @use_chief_in_tf_config = args[:use_chief_in_tf_config] if args.key?(:use_chief_in_tf_config)
  @worker_config = args[:worker_config] if args.key?(:worker_config)
  @worker_count = args[:worker_count] if args.key?(:worker_count)
  @worker_type = args[:worker_type] if args.key?(:worker_type)
end