Class: Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaTrainingjobDefinitionAutoMlForecastingInputsTransformation
- Inherits:
-
Object
- Object
- Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaTrainingjobDefinitionAutoMlForecastingInputsTransformation
- Includes:
- Core::Hashable, Core::JsonObjectSupport
- Defined in:
- lib/google/apis/aiplatform_v1/classes.rb,
lib/google/apis/aiplatform_v1/representations.rb,
lib/google/apis/aiplatform_v1/representations.rb
Instance Attribute Summary collapse
-
#auto ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaTrainingjobDefinitionAutoMlForecastingInputsTransformationAutoTransformation
Training pipeline will infer the proper transformation based on the statistic of dataset.
-
#categorical ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaTrainingjobDefinitionAutoMlForecastingInputsTransformationCategoricalTransformation
Training pipeline will perform following transformation functions.
-
#numeric ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaTrainingjobDefinitionAutoMlForecastingInputsTransformationNumericTransformation
Training pipeline will perform following transformation functions.
-
#text ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaTrainingjobDefinitionAutoMlForecastingInputsTransformationTextTransformation
Training pipeline will perform following transformation functions.
-
#timestamp ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaTrainingjobDefinitionAutoMlForecastingInputsTransformationTimestampTransformation
Training pipeline will perform following transformation functions.
Instance Method Summary collapse
-
#initialize(**args) ⇒ GoogleCloudAiplatformV1SchemaTrainingjobDefinitionAutoMlForecastingInputsTransformation
constructor
A new instance of GoogleCloudAiplatformV1SchemaTrainingjobDefinitionAutoMlForecastingInputsTransformation.
-
#update!(**args) ⇒ Object
Update properties of this object.
Constructor Details
#initialize(**args) ⇒ GoogleCloudAiplatformV1SchemaTrainingjobDefinitionAutoMlForecastingInputsTransformation
Returns a new instance of GoogleCloudAiplatformV1SchemaTrainingjobDefinitionAutoMlForecastingInputsTransformation.
17972 17973 17974 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 17972 def initialize(**args) update!(**args) end |
Instance Attribute Details
#auto ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaTrainingjobDefinitionAutoMlForecastingInputsTransformationAutoTransformation
Training pipeline will infer the proper transformation based on the statistic
of dataset.
Corresponds to the JSON property auto
17931 17932 17933 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 17931 def auto @auto end |
#categorical ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaTrainingjobDefinitionAutoMlForecastingInputsTransformationCategoricalTransformation
Training pipeline will perform following transformation functions. * The
categorical string as is--no change to case, punctuation, spelling, tense, and
so on. * Convert the category name to a dictionary lookup index and generate
an embedding for each index. * Categories that appear less than 5 times in the
training dataset are treated as the "unknown" category. The "unknown" category
gets its own special lookup index and resulting embedding.
Corresponds to the JSON property categorical
17941 17942 17943 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 17941 def categorical @categorical end |
#numeric ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaTrainingjobDefinitionAutoMlForecastingInputsTransformationNumericTransformation
Training pipeline will perform following transformation functions. * The value
converted to float32. * The z_score of the value. * log(value+1) when the
value is greater than or equal to 0. Otherwise, this transformation is not
applied and the value is considered a missing value. * z_score of log(value+1)
when the value is greater than or equal to 0. Otherwise, this transformation
is not applied and the value is considered a missing value. * A boolean value
that indicates whether the value is valid.
Corresponds to the JSON property numeric
17952 17953 17954 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 17952 def numeric @numeric end |
#text ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaTrainingjobDefinitionAutoMlForecastingInputsTransformationTextTransformation
Training pipeline will perform following transformation functions. * The text
as is--no change to case, punctuation, spelling, tense, and so on. * Convert
the category name to a dictionary lookup index and generate an embedding for
each index.
Corresponds to the JSON property text
17960 17961 17962 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 17960 def text @text end |
#timestamp ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaTrainingjobDefinitionAutoMlForecastingInputsTransformationTimestampTransformation
Training pipeline will perform following transformation functions. * Apply the
transformation functions for Numerical columns. * Determine the year, month,
day,and weekday. Treat each value from the timestamp as a Categorical column. *
Invalid numerical values (for example, values that fall outside of a typical
timestamp range, or are extreme values) receive no special treatment and are
not removed.
Corresponds to the JSON property timestamp
17970 17971 17972 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 17970 def @timestamp end |
Instance Method Details
#update!(**args) ⇒ Object
Update properties of this object
17977 17978 17979 17980 17981 17982 17983 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 17977 def update!(**args) @auto = args[:auto] if args.key?(:auto) @categorical = args[:categorical] if args.key?(:categorical) @numeric = args[:numeric] if args.key?(:numeric) @text = args[:text] if args.key?(:text) @timestamp = args[:timestamp] if args.key?(:timestamp) end |