Class: Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaTrainingjobDefinitionAutoMlTablesInputs
- Inherits:
-
Object
- Object
- Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaTrainingjobDefinitionAutoMlTablesInputs
- Includes:
- Core::Hashable, Core::JsonObjectSupport
- Defined in:
- lib/google/apis/aiplatform_v1/classes.rb,
lib/google/apis/aiplatform_v1/representations.rb,
lib/google/apis/aiplatform_v1/representations.rb
Instance Attribute Summary collapse
-
#additional_experiments ⇒ Array<String>
Additional experiment flags for the Tables training pipeline.
-
#disable_early_stopping ⇒ Boolean
(also: #disable_early_stopping?)
Use the entire training budget.
-
#export_evaluated_data_items_config ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaTrainingjobDefinitionExportEvaluatedDataItemsConfig
Configuration for exporting test set predictions to a BigQuery table.
-
#optimization_objective ⇒ String
Objective function the model is optimizing towards.
-
#optimization_objective_precision_value ⇒ Float
Required when optimization_objective is "maximize-recall-at-precision".
-
#optimization_objective_recall_value ⇒ Float
Required when optimization_objective is "maximize-precision-at-recall".
-
#prediction_type ⇒ String
The type of prediction the Model is to produce.
-
#target_column ⇒ String
The column name of the target column that the model is to predict.
-
#train_budget_milli_node_hours ⇒ Fixnum
Required.
-
#transformations ⇒ Array<Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaTrainingjobDefinitionAutoMlTablesInputsTransformation>
Each transformation will apply transform function to given input column.
-
#weight_column_name ⇒ String
Column name that should be used as the weight column.
Instance Method Summary collapse
-
#initialize(**args) ⇒ GoogleCloudAiplatformV1SchemaTrainingjobDefinitionAutoMlTablesInputs
constructor
A new instance of GoogleCloudAiplatformV1SchemaTrainingjobDefinitionAutoMlTablesInputs.
-
#update!(**args) ⇒ Object
Update properties of this object.
Constructor Details
#initialize(**args) ⇒ GoogleCloudAiplatformV1SchemaTrainingjobDefinitionAutoMlTablesInputs
Returns a new instance of GoogleCloudAiplatformV1SchemaTrainingjobDefinitionAutoMlTablesInputs.
21916 21917 21918 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 21916 def initialize(**args) update!(**args) end |
Instance Attribute Details
#additional_experiments ⇒ Array<String>
Additional experiment flags for the Tables training pipeline.
Corresponds to the JSON property additionalExperiments
21828 21829 21830 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 21828 def additional_experiments @additional_experiments end |
#disable_early_stopping ⇒ Boolean Also known as: disable_early_stopping?
Use the entire training budget. This disables the early stopping feature. By
default, the early stopping feature is enabled, which means that AutoML Tables
might stop training before the entire training budget has been used.
Corresponds to the JSON property disableEarlyStopping
21835 21836 21837 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 21835 def disable_early_stopping @disable_early_stopping end |
#export_evaluated_data_items_config ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaTrainingjobDefinitionExportEvaluatedDataItemsConfig
Configuration for exporting test set predictions to a BigQuery table.
Corresponds to the JSON property exportEvaluatedDataItemsConfig
21841 21842 21843 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 21841 def export_evaluated_data_items_config @export_evaluated_data_items_config end |
#optimization_objective ⇒ String
Objective function the model is optimizing towards. The training process
creates a model that maximizes/minimizes the value of the objective function
over the validation set. The supported optimization objectives depend on the
prediction type. If the field is not set, a default objective function is used.
classification (binary): "maximize-au-roc" (default) - Maximize the area
under the receiver operating characteristic (ROC) curve. "minimize-log-loss" -
Minimize log loss. "maximize-au-prc" - Maximize the area under the precision-
recall curve. "maximize-precision-at-recall" - Maximize precision for a
specified recall value. "maximize-recall-at-precision" - Maximize recall for a
specified precision value. classification (multi-class): "minimize-log-loss" (
default) - Minimize log loss. regression: "minimize-rmse" (default) - Minimize
root-mean-squared error (RMSE). "minimize-mae" - Minimize mean-absolute error (
MAE). "minimize-rmsle" - Minimize root-mean-squared log error (RMSLE).
Corresponds to the JSON property optimizationObjective
21858 21859 21860 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 21858 def optimization_objective @optimization_objective end |
#optimization_objective_precision_value ⇒ Float
Required when optimization_objective is "maximize-recall-at-precision". Must
be between 0 and 1, inclusive.
Corresponds to the JSON property optimizationObjectivePrecisionValue
21864 21865 21866 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 21864 def optimization_objective_precision_value @optimization_objective_precision_value end |
#optimization_objective_recall_value ⇒ Float
Required when optimization_objective is "maximize-precision-at-recall". Must
be between 0 and 1, inclusive.
Corresponds to the JSON property optimizationObjectiveRecallValue
21870 21871 21872 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 21870 def optimization_objective_recall_value @optimization_objective_recall_value end |
#prediction_type ⇒ String
The type of prediction the Model is to produce. "classification" - Predict one
out of multiple target values is picked for each row. "regression" - Predict a
value based on its relation to other values. This type is available only to
columns that contain semantically numeric values, i.e. integers or floating
point number, even if stored as e.g. strings.
Corresponds to the JSON property predictionType
21879 21880 21881 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 21879 def prediction_type @prediction_type end |
#target_column ⇒ String
The column name of the target column that the model is to predict.
Corresponds to the JSON property targetColumn
21884 21885 21886 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 21884 def target_column @target_column end |
#train_budget_milli_node_hours ⇒ Fixnum
Required. The train budget of creating this model, expressed in milli node
hours i.e. 1,000 value in this field means 1 node hour. The training cost of
the model will not exceed this budget. The final cost will be attempted to be
close to the budget, though may end up being (even) noticeably smaller - at
the backend's discretion. This especially may happen when further model
training ceases to provide any improvements. If the budget is set to a value
known to be insufficient to train a model for the given dataset, the training
won't be attempted and will error. The train budget must be between 1,000 and
72,000 milli node hours, inclusive.
Corresponds to the JSON property trainBudgetMilliNodeHours
21897 21898 21899 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 21897 def train_budget_milli_node_hours @train_budget_milli_node_hours end |
#transformations ⇒ Array<Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaTrainingjobDefinitionAutoMlTablesInputsTransformation>
Each transformation will apply transform function to given input column. And
the result will be used for training. When creating transformation for
BigQuery Struct column, the column should be flattened using "." as the
delimiter.
Corresponds to the JSON property transformations
21905 21906 21907 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 21905 def transformations @transformations end |
#weight_column_name ⇒ String
Column name that should be used as the weight column. Higher values in this
column give more importance to the row during model training. The column must
have numeric values between 0 and 10000 inclusively; 0 means the row is
ignored for training. If weight column field is not set, then all rows are
assumed to have equal weight of 1.
Corresponds to the JSON property weightColumnName
21914 21915 21916 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 21914 def weight_column_name @weight_column_name end |
Instance Method Details
#update!(**args) ⇒ Object
Update properties of this object
21921 21922 21923 21924 21925 21926 21927 21928 21929 21930 21931 21932 21933 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 21921 def update!(**args) @additional_experiments = args[:additional_experiments] if args.key?(:additional_experiments) @disable_early_stopping = args[:disable_early_stopping] if args.key?(:disable_early_stopping) @export_evaluated_data_items_config = args[:export_evaluated_data_items_config] if args.key?(:export_evaluated_data_items_config) @optimization_objective = args[:optimization_objective] if args.key?(:optimization_objective) @optimization_objective_precision_value = args[:optimization_objective_precision_value] if args.key?(:optimization_objective_precision_value) @optimization_objective_recall_value = args[:optimization_objective_recall_value] if args.key?(:optimization_objective_recall_value) @prediction_type = args[:prediction_type] if args.key?(:prediction_type) @target_column = args[:target_column] if args.key?(:target_column) @train_budget_milli_node_hours = args[:train_budget_milli_node_hours] if args.key?(:train_budget_milli_node_hours) @transformations = args[:transformations] if args.key?(:transformations) @weight_column_name = args[:weight_column_name] if args.key?(:weight_column_name) end |