Class: Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaTrainingjobDefinitionAutoMlTablesInputs

Inherits:
Object
  • Object
show all
Includes:
Core::Hashable, Core::JsonObjectSupport
Defined in:
lib/google/apis/aiplatform_v1/classes.rb,
lib/google/apis/aiplatform_v1/representations.rb,
lib/google/apis/aiplatform_v1/representations.rb

Instance Attribute Summary collapse

Instance Method Summary collapse

Constructor Details

#initialize(**args) ⇒ GoogleCloudAiplatformV1SchemaTrainingjobDefinitionAutoMlTablesInputs

Returns a new instance of GoogleCloudAiplatformV1SchemaTrainingjobDefinitionAutoMlTablesInputs.



21916
21917
21918
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 21916

def initialize(**args)
   update!(**args)
end

Instance Attribute Details

#additional_experimentsArray<String>

Additional experiment flags for the Tables training pipeline. Corresponds to the JSON property additionalExperiments

Returns:

  • (Array<String>)


21828
21829
21830
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 21828

def additional_experiments
  @additional_experiments
end

#disable_early_stoppingBoolean Also known as: disable_early_stopping?

Use the entire training budget. This disables the early stopping feature. By default, the early stopping feature is enabled, which means that AutoML Tables might stop training before the entire training budget has been used. Corresponds to the JSON property disableEarlyStopping

Returns:

  • (Boolean)


21835
21836
21837
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 21835

def disable_early_stopping
  @disable_early_stopping
end

#export_evaluated_data_items_configGoogle::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaTrainingjobDefinitionExportEvaluatedDataItemsConfig

Configuration for exporting test set predictions to a BigQuery table. Corresponds to the JSON property exportEvaluatedDataItemsConfig



21841
21842
21843
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 21841

def export_evaluated_data_items_config
  @export_evaluated_data_items_config
end

#optimization_objectiveString

Objective function the model is optimizing towards. The training process creates a model that maximizes/minimizes the value of the objective function over the validation set. The supported optimization objectives depend on the prediction type. If the field is not set, a default objective function is used. classification (binary): "maximize-au-roc" (default) - Maximize the area under the receiver operating characteristic (ROC) curve. "minimize-log-loss" - Minimize log loss. "maximize-au-prc" - Maximize the area under the precision- recall curve. "maximize-precision-at-recall" - Maximize precision for a specified recall value. "maximize-recall-at-precision" - Maximize recall for a specified precision value. classification (multi-class): "minimize-log-loss" ( default) - Minimize log loss. regression: "minimize-rmse" (default) - Minimize root-mean-squared error (RMSE). "minimize-mae" - Minimize mean-absolute error ( MAE). "minimize-rmsle" - Minimize root-mean-squared log error (RMSLE). Corresponds to the JSON property optimizationObjective

Returns:

  • (String)


21858
21859
21860
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 21858

def optimization_objective
  @optimization_objective
end

#optimization_objective_precision_valueFloat

Required when optimization_objective is "maximize-recall-at-precision". Must be between 0 and 1, inclusive. Corresponds to the JSON property optimizationObjectivePrecisionValue

Returns:

  • (Float)


21864
21865
21866
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 21864

def optimization_objective_precision_value
  @optimization_objective_precision_value
end

#optimization_objective_recall_valueFloat

Required when optimization_objective is "maximize-precision-at-recall". Must be between 0 and 1, inclusive. Corresponds to the JSON property optimizationObjectiveRecallValue

Returns:

  • (Float)


21870
21871
21872
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 21870

def optimization_objective_recall_value
  @optimization_objective_recall_value
end

#prediction_typeString

The type of prediction the Model is to produce. "classification" - Predict one out of multiple target values is picked for each row. "regression" - Predict a value based on its relation to other values. This type is available only to columns that contain semantically numeric values, i.e. integers or floating point number, even if stored as e.g. strings. Corresponds to the JSON property predictionType

Returns:

  • (String)


21879
21880
21881
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 21879

def prediction_type
  @prediction_type
end

#target_columnString

The column name of the target column that the model is to predict. Corresponds to the JSON property targetColumn

Returns:

  • (String)


21884
21885
21886
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 21884

def target_column
  @target_column
end

#train_budget_milli_node_hoursFixnum

Required. The train budget of creating this model, expressed in milli node hours i.e. 1,000 value in this field means 1 node hour. The training cost of the model will not exceed this budget. The final cost will be attempted to be close to the budget, though may end up being (even) noticeably smaller - at the backend's discretion. This especially may happen when further model training ceases to provide any improvements. If the budget is set to a value known to be insufficient to train a model for the given dataset, the training won't be attempted and will error. The train budget must be between 1,000 and 72,000 milli node hours, inclusive. Corresponds to the JSON property trainBudgetMilliNodeHours

Returns:

  • (Fixnum)


21897
21898
21899
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 21897

def train_budget_milli_node_hours
  @train_budget_milli_node_hours
end

#transformationsArray<Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaTrainingjobDefinitionAutoMlTablesInputsTransformation>

Each transformation will apply transform function to given input column. And the result will be used for training. When creating transformation for BigQuery Struct column, the column should be flattened using "." as the delimiter. Corresponds to the JSON property transformations



21905
21906
21907
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 21905

def transformations
  @transformations
end

#weight_column_nameString

Column name that should be used as the weight column. Higher values in this column give more importance to the row during model training. The column must have numeric values between 0 and 10000 inclusively; 0 means the row is ignored for training. If weight column field is not set, then all rows are assumed to have equal weight of 1. Corresponds to the JSON property weightColumnName

Returns:

  • (String)


21914
21915
21916
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 21914

def weight_column_name
  @weight_column_name
end

Instance Method Details

#update!(**args) ⇒ Object

Update properties of this object



21921
21922
21923
21924
21925
21926
21927
21928
21929
21930
21931
21932
21933
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 21921

def update!(**args)
  @additional_experiments = args[:additional_experiments] if args.key?(:additional_experiments)
  @disable_early_stopping = args[:disable_early_stopping] if args.key?(:disable_early_stopping)
  @export_evaluated_data_items_config = args[:export_evaluated_data_items_config] if args.key?(:export_evaluated_data_items_config)
  @optimization_objective = args[:optimization_objective] if args.key?(:optimization_objective)
  @optimization_objective_precision_value = args[:optimization_objective_precision_value] if args.key?(:optimization_objective_precision_value)
  @optimization_objective_recall_value = args[:optimization_objective_recall_value] if args.key?(:optimization_objective_recall_value)
  @prediction_type = args[:prediction_type] if args.key?(:prediction_type)
  @target_column = args[:target_column] if args.key?(:target_column)
  @train_budget_milli_node_hours = args[:train_budget_milli_node_hours] if args.key?(:train_budget_milli_node_hours)
  @transformations = args[:transformations] if args.key?(:transformations)
  @weight_column_name = args[:weight_column_name] if args.key?(:weight_column_name)
end