Class: Google::Apis::AiplatformV1::GoogleCloudAiplatformV1ModelExplanation

Inherits:
Object
  • Object
show all
Includes:
Core::Hashable, Core::JsonObjectSupport
Defined in:
lib/google/apis/aiplatform_v1/classes.rb,
lib/google/apis/aiplatform_v1/representations.rb,
lib/google/apis/aiplatform_v1/representations.rb

Overview

Aggregated explanation metrics for a Model over a set of instances.

Instance Attribute Summary collapse

Instance Method Summary collapse

Constructor Details

#initialize(**args) ⇒ GoogleCloudAiplatformV1ModelExplanation

Returns a new instance of GoogleCloudAiplatformV1ModelExplanation.



13783
13784
13785
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 13783

def initialize(**args)
   update!(**args)
end

Instance Attribute Details

#mean_attributionsArray<Google::Apis::AiplatformV1::GoogleCloudAiplatformV1Attribution>

Output only. Aggregated attributions explaining the Model's prediction outputs over the set of instances. The attributions are grouped by outputs. For Models that predict only one output, such as regression Models that predict only one score, there is only one attibution that explains the predicted output. For Models that predict multiple outputs, such as multiclass Models that predict multiple classes, each element explains one specific item. Attribution. output_index can be used to identify which output this attribution is explaining. The baselineOutputValue, instanceOutputValue and featureAttributions fields are averaged over the test data. NOTE: Currently AutoML tabular classification Models produce only one attribution, which averages attributions over all the classes it predicts. Attribution. approximation_error is not populated. Corresponds to the JSON property meanAttributions



13781
13782
13783
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 13781

def mean_attributions
  @mean_attributions
end

Instance Method Details

#update!(**args) ⇒ Object

Update properties of this object



13788
13789
13790
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 13788

def update!(**args)
  @mean_attributions = args[:mean_attributions] if args.key?(:mean_attributions)
end