Class: Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaModelevaluationMetricsRegressionEvaluationMetrics
- Inherits:
-
Object
- Object
- Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaModelevaluationMetricsRegressionEvaluationMetrics
- Includes:
- Core::Hashable, Core::JsonObjectSupport
- Defined in:
- lib/google/apis/aiplatform_v1/classes.rb,
lib/google/apis/aiplatform_v1/representations.rb,
lib/google/apis/aiplatform_v1/representations.rb
Overview
Metrics for regression evaluation results.
Instance Attribute Summary collapse
-
#mean_absolute_error ⇒ Float
Mean Absolute Error (MAE).
-
#mean_absolute_percentage_error ⇒ Float
Mean absolute percentage error.
-
#r_squared ⇒ Float
Coefficient of determination as Pearson correlation coefficient.
-
#root_mean_squared_error ⇒ Float
Root Mean Squared Error (RMSE).
-
#root_mean_squared_log_error ⇒ Float
Root mean squared log error.
Instance Method Summary collapse
-
#initialize(**args) ⇒ GoogleCloudAiplatformV1SchemaModelevaluationMetricsRegressionEvaluationMetrics
constructor
A new instance of GoogleCloudAiplatformV1SchemaModelevaluationMetricsRegressionEvaluationMetrics.
-
#update!(**args) ⇒ Object
Update properties of this object.
Constructor Details
#initialize(**args) ⇒ GoogleCloudAiplatformV1SchemaModelevaluationMetricsRegressionEvaluationMetrics
Returns a new instance of GoogleCloudAiplatformV1SchemaModelevaluationMetricsRegressionEvaluationMetrics.
19077 19078 19079 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 19077 def initialize(**args) update!(**args) end |
Instance Attribute Details
#mean_absolute_error ⇒ Float
Mean Absolute Error (MAE).
Corresponds to the JSON property meanAbsoluteError
19052 19053 19054 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 19052 def mean_absolute_error @mean_absolute_error end |
#mean_absolute_percentage_error ⇒ Float
Mean absolute percentage error. Infinity when there are zeros in the ground
truth.
Corresponds to the JSON property meanAbsolutePercentageError
19058 19059 19060 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 19058 def mean_absolute_percentage_error @mean_absolute_percentage_error end |
#r_squared ⇒ Float
Coefficient of determination as Pearson correlation coefficient. Undefined
when ground truth or predictions are constant or near constant.
Corresponds to the JSON property rSquared
19064 19065 19066 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 19064 def r_squared @r_squared end |
#root_mean_squared_error ⇒ Float
Root Mean Squared Error (RMSE).
Corresponds to the JSON property rootMeanSquaredError
19069 19070 19071 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 19069 def root_mean_squared_error @root_mean_squared_error end |
#root_mean_squared_log_error ⇒ Float
Root mean squared log error. Undefined when there are negative ground truth
values or predictions.
Corresponds to the JSON property rootMeanSquaredLogError
19075 19076 19077 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 19075 def root_mean_squared_log_error @root_mean_squared_log_error end |
Instance Method Details
#update!(**args) ⇒ Object
Update properties of this object
19082 19083 19084 19085 19086 19087 19088 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 19082 def update!(**args) @mean_absolute_error = args[:mean_absolute_error] if args.key?(:mean_absolute_error) @mean_absolute_percentage_error = args[:mean_absolute_percentage_error] if args.key?(:mean_absolute_percentage_error) @r_squared = args[:r_squared] if args.key?(:r_squared) @root_mean_squared_error = args[:root_mean_squared_error] if args.key?(:root_mean_squared_error) @root_mean_squared_log_error = args[:root_mean_squared_log_error] if args.key?(:root_mean_squared_log_error) end |