Class: Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaTrainingjobDefinitionAutoMlForecastingInputs

Inherits:
Object
  • Object
show all
Includes:
Core::Hashable, Core::JsonObjectSupport
Defined in:
lib/google/apis/aiplatform_v1/classes.rb,
lib/google/apis/aiplatform_v1/representations.rb,
lib/google/apis/aiplatform_v1/representations.rb

Instance Attribute Summary collapse

Instance Method Summary collapse

Constructor Details

#initialize(**args) ⇒ GoogleCloudAiplatformV1SchemaTrainingjobDefinitionAutoMlForecastingInputs

Returns a new instance of GoogleCloudAiplatformV1SchemaTrainingjobDefinitionAutoMlForecastingInputs.



21577
21578
21579
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 21577

def initialize(**args)
   update!(**args)
end

Instance Attribute Details

#additional_experimentsArray<String>

Additional experiment flags for the time series forcasting training. Corresponds to the JSON property additionalExperiments

Returns:

  • (Array<String>)


21413
21414
21415
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 21413

def additional_experiments
  @additional_experiments
end

#available_at_forecast_columnsArray<String>

Names of columns that are available and provided when a forecast is requested. These columns contain information for the given entity (identified by the time_series_identifier_column column) that is known at forecast. For example, predicted weather for a specific day. Corresponds to the JSON property availableAtForecastColumns

Returns:

  • (Array<String>)


21421
21422
21423
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 21421

def available_at_forecast_columns
  @available_at_forecast_columns
end

#context_windowFixnum

The amount of time into the past training and prediction data is used for model training and prediction respectively. Expressed in number of units defined by the data_granularity field. Corresponds to the JSON property contextWindow

Returns:

  • (Fixnum)


21428
21429
21430
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 21428

def context_window
  @context_window
end

#data_granularityGoogle::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaTrainingjobDefinitionAutoMlForecastingInputsGranularity

A duration of time expressed in time granularity units. Corresponds to the JSON property dataGranularity



21433
21434
21435
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 21433

def data_granularity
  @data_granularity
end

#enable_probabilistic_inferenceBoolean Also known as: enable_probabilistic_inference?

If probabilistic inference is enabled, the model will fit a distribution that captures the uncertainty of a prediction. At inference time, the predictive distribution is used to make a point prediction that minimizes the optimization objective. For example, the mean of a predictive distribution is the point prediction that minimizes RMSE loss. If quantiles are specified, then the quantiles of the distribution are also returned. The optimization objective cannot be minimize-quantile-loss. Corresponds to the JSON property enableProbabilisticInference

Returns:

  • (Boolean)


21444
21445
21446
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 21444

def enable_probabilistic_inference
  @enable_probabilistic_inference
end

#export_evaluated_data_items_configGoogle::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaTrainingjobDefinitionExportEvaluatedDataItemsConfig

Configuration for exporting test set predictions to a BigQuery table. Corresponds to the JSON property exportEvaluatedDataItemsConfig



21450
21451
21452
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 21450

def export_evaluated_data_items_config
  @export_evaluated_data_items_config
end

#forecast_horizonFixnum

The amount of time into the future for which forecasted values for the target are returned. Expressed in number of units defined by the data_granularity field. Corresponds to the JSON property forecastHorizon

Returns:

  • (Fixnum)


21457
21458
21459
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 21457

def forecast_horizon
  @forecast_horizon
end

#hierarchy_configGoogle::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaTrainingjobDefinitionHierarchyConfig

Configuration that defines the hierarchical relationship of time series and parameters for hierarchical forecasting strategies. Corresponds to the JSON property hierarchyConfig



21463
21464
21465
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 21463

def hierarchy_config
  @hierarchy_config
end

#holiday_regionsArray<String>

The geographical region based on which the holiday effect is applied in modeling by adding holiday categorical array feature that include all holidays matching the date. This option only allowed when data_granularity is day. By default, holiday effect modeling is disabled. To turn it on, specify the holiday region using this option. Corresponds to the JSON property holidayRegions

Returns:

  • (Array<String>)


21472
21473
21474
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 21472

def holiday_regions
  @holiday_regions
end

#optimization_objectiveString

Objective function the model is optimizing towards. The training process creates a model that optimizes the value of the objective function over the validation set. The supported optimization objectives: * "minimize-rmse" ( default) - Minimize root-mean-squared error (RMSE). * "minimize-mae" - Minimize mean-absolute error (MAE). * "minimize-rmsle" - Minimize root-mean- squared log error (RMSLE). * "minimize-rmspe" - Minimize root-mean-squared percentage error (RMSPE). * "minimize-wape-mae" - Minimize the combination of weighted absolute percentage error (WAPE) and mean-absolute-error (MAE). * " minimize-quantile-loss" - Minimize the quantile loss at the quantiles defined in quantiles. * "minimize-mape" - Minimize the mean absolute percentage error. Corresponds to the JSON property optimizationObjective

Returns:

  • (String)


21487
21488
21489
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 21487

def optimization_objective
  @optimization_objective
end

#quantilesArray<Float>

Quantiles to use for minimize-quantile-loss optimization_objective, or for probabilistic inference. Up to 5 quantiles are allowed of values between 0 and 1, exclusive. Required if the value of optimization_objective is minimize- quantile-loss. Represents the percent quantiles to use for that objective. Quantiles must be unique. Corresponds to the JSON property quantiles

Returns:

  • (Array<Float>)


21496
21497
21498
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 21496

def quantiles
  @quantiles
end

#target_columnString

The name of the column that the Model is to predict values for. This column must be unavailable at forecast. Corresponds to the JSON property targetColumn

Returns:

  • (String)


21502
21503
21504
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 21502

def target_column
  @target_column
end

#time_columnString

The name of the column that identifies time order in the time series. This column must be available at forecast. Corresponds to the JSON property timeColumn

Returns:

  • (String)


21508
21509
21510
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 21508

def time_column
  @time_column
end

#time_series_attribute_columnsArray<String>

Column names that should be used as attribute columns. The value of these columns does not vary as a function of time. For example, store ID or item color. Corresponds to the JSON property timeSeriesAttributeColumns

Returns:

  • (Array<String>)


21515
21516
21517
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 21515

def time_series_attribute_columns
  @time_series_attribute_columns
end

#time_series_identifier_columnString

The name of the column that identifies the time series. Corresponds to the JSON property timeSeriesIdentifierColumn

Returns:

  • (String)


21520
21521
21522
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 21520

def time_series_identifier_column
  @time_series_identifier_column
end

#train_budget_milli_node_hoursFixnum

Required. The train budget of creating this model, expressed in milli node hours i.e. 1,000 value in this field means 1 node hour. The training cost of the model will not exceed this budget. The final cost will be attempted to be close to the budget, though may end up being (even) noticeably smaller - at the backend's discretion. This especially may happen when further model training ceases to provide any improvements. If the budget is set to a value known to be insufficient to train a model for the given dataset, the training won't be attempted and will error. The train budget must be between 1,000 and 72,000 milli node hours, inclusive. Corresponds to the JSON property trainBudgetMilliNodeHours

Returns:

  • (Fixnum)


21533
21534
21535
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 21533

def train_budget_milli_node_hours
  @train_budget_milli_node_hours
end

#transformationsArray<Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaTrainingjobDefinitionAutoMlForecastingInputsTransformation>

Each transformation will apply transform function to given input column. And the result will be used for training. When creating transformation for BigQuery Struct column, the column should be flattened using "." as the delimiter. Corresponds to the JSON property transformations



21541
21542
21543
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 21541

def transformations
  @transformations
end

#unavailable_at_forecast_columnsArray<String>

Names of columns that are unavailable when a forecast is requested. This column contains information for the given entity (identified by the time_series_identifier_column) that is unknown before the forecast For example, actual weather on a given day. Corresponds to the JSON property unavailableAtForecastColumns

Returns:

  • (Array<String>)


21549
21550
21551
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 21549

def unavailable_at_forecast_columns
  @unavailable_at_forecast_columns
end

#validation_optionsString

Validation options for the data validation component. The available options are: * "fail-pipeline" - default, will validate against the validation and fail the pipeline if it fails. * "ignore-validation" - ignore the results of the validation and continue Corresponds to the JSON property validationOptions

Returns:

  • (String)


21557
21558
21559
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 21557

def validation_options
  @validation_options
end

#weight_columnString

Column name that should be used as the weight column. Higher values in this column give more importance to the row during model training. The column must have numeric values between 0 and 10000 inclusively; 0 means the row is ignored for training. If weight column field is not set, then all rows are assumed to have equal weight of 1. Corresponds to the JSON property weightColumn

Returns:

  • (String)


21566
21567
21568
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 21566

def weight_column
  @weight_column
end

#window_configGoogle::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaTrainingjobDefinitionWindowConfig

Config that contains the strategy used to generate sliding windows in time series training. A window is a series of rows that comprise the context up to the time of prediction, and the horizon following. The corresponding row for each window marks the start of the forecast horizon. Each window is used as an input example for training/evaluation. Corresponds to the JSON property windowConfig



21575
21576
21577
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 21575

def window_config
  @window_config
end

Instance Method Details

#update!(**args) ⇒ Object

Update properties of this object



21582
21583
21584
21585
21586
21587
21588
21589
21590
21591
21592
21593
21594
21595
21596
21597
21598
21599
21600
21601
21602
21603
21604
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 21582

def update!(**args)
  @additional_experiments = args[:additional_experiments] if args.key?(:additional_experiments)
  @available_at_forecast_columns = args[:available_at_forecast_columns] if args.key?(:available_at_forecast_columns)
  @context_window = args[:context_window] if args.key?(:context_window)
  @data_granularity = args[:data_granularity] if args.key?(:data_granularity)
  @enable_probabilistic_inference = args[:enable_probabilistic_inference] if args.key?(:enable_probabilistic_inference)
  @export_evaluated_data_items_config = args[:export_evaluated_data_items_config] if args.key?(:export_evaluated_data_items_config)
  @forecast_horizon = args[:forecast_horizon] if args.key?(:forecast_horizon)
  @hierarchy_config = args[:hierarchy_config] if args.key?(:hierarchy_config)
  @holiday_regions = args[:holiday_regions] if args.key?(:holiday_regions)
  @optimization_objective = args[:optimization_objective] if args.key?(:optimization_objective)
  @quantiles = args[:quantiles] if args.key?(:quantiles)
  @target_column = args[:target_column] if args.key?(:target_column)
  @time_column = args[:time_column] if args.key?(:time_column)
  @time_series_attribute_columns = args[:time_series_attribute_columns] if args.key?(:time_series_attribute_columns)
  @time_series_identifier_column = args[:time_series_identifier_column] if args.key?(:time_series_identifier_column)
  @train_budget_milli_node_hours = args[:train_budget_milli_node_hours] if args.key?(:train_budget_milli_node_hours)
  @transformations = args[:transformations] if args.key?(:transformations)
  @unavailable_at_forecast_columns = args[:unavailable_at_forecast_columns] if args.key?(:unavailable_at_forecast_columns)
  @validation_options = args[:validation_options] if args.key?(:validation_options)
  @weight_column = args[:weight_column] if args.key?(:weight_column)
  @window_config = args[:window_config] if args.key?(:window_config)
end