Class: Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaTrainingjobDefinitionSeq2SeqPlusForecastingInputsTransformation
- Inherits:
-
Object
- Object
- Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaTrainingjobDefinitionSeq2SeqPlusForecastingInputsTransformation
- Includes:
- Core::Hashable, Core::JsonObjectSupport
- Defined in:
- lib/google/apis/aiplatform_v1/classes.rb,
lib/google/apis/aiplatform_v1/representations.rb,
lib/google/apis/aiplatform_v1/representations.rb
Instance Attribute Summary collapse
-
#auto ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaTrainingjobDefinitionSeq2SeqPlusForecastingInputsTransformationAutoTransformation
Training pipeline will infer the proper transformation based on the statistic of dataset.
-
#categorical ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaTrainingjobDefinitionSeq2SeqPlusForecastingInputsTransformationCategoricalTransformation
Training pipeline will perform following transformation functions.
-
#numeric ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaTrainingjobDefinitionSeq2SeqPlusForecastingInputsTransformationNumericTransformation
Training pipeline will perform following transformation functions.
-
#text ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaTrainingjobDefinitionSeq2SeqPlusForecastingInputsTransformationTextTransformation
Training pipeline will perform following transformation functions.
-
#timestamp ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaTrainingjobDefinitionSeq2SeqPlusForecastingInputsTransformationTimestampTransformation
Training pipeline will perform following transformation functions.
Instance Method Summary collapse
-
#initialize(**args) ⇒ GoogleCloudAiplatformV1SchemaTrainingjobDefinitionSeq2SeqPlusForecastingInputsTransformation
constructor
A new instance of GoogleCloudAiplatformV1SchemaTrainingjobDefinitionSeq2SeqPlusForecastingInputsTransformation.
-
#update!(**args) ⇒ Object
Update properties of this object.
Constructor Details
#initialize(**args) ⇒ GoogleCloudAiplatformV1SchemaTrainingjobDefinitionSeq2SeqPlusForecastingInputsTransformation
Returns a new instance of GoogleCloudAiplatformV1SchemaTrainingjobDefinitionSeq2SeqPlusForecastingInputsTransformation.
23464 23465 23466 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 23464 def initialize(**args) update!(**args) end |
Instance Attribute Details
#auto ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaTrainingjobDefinitionSeq2SeqPlusForecastingInputsTransformationAutoTransformation
Training pipeline will infer the proper transformation based on the statistic
of dataset.
Corresponds to the JSON property auto
23424 23425 23426 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 23424 def auto @auto end |
#categorical ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaTrainingjobDefinitionSeq2SeqPlusForecastingInputsTransformationCategoricalTransformation
Training pipeline will perform following transformation functions. * The
categorical string as is--no change to case, punctuation, spelling, tense, and
so on. * Convert the category name to a dictionary lookup index and generate
an embedding for each index. * Categories that appear less than 5 times in the
training dataset are treated as the "unknown" category. The "unknown" category
gets its own special lookup index and resulting embedding.
Corresponds to the JSON property categorical
23434 23435 23436 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 23434 def categorical @categorical end |
#numeric ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaTrainingjobDefinitionSeq2SeqPlusForecastingInputsTransformationNumericTransformation
Training pipeline will perform following transformation functions. * The value
converted to float32. * The z_score of the value. * log(value+1) when the
value is greater than or equal to 0. Otherwise, this transformation is not
applied and the value is considered a missing value. * z_score of log(value+1)
when the value is greater than or equal to 0. Otherwise, this transformation
is not applied and the value is considered a missing value.
Corresponds to the JSON property numeric
23444 23445 23446 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 23444 def numeric @numeric end |
#text ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaTrainingjobDefinitionSeq2SeqPlusForecastingInputsTransformationTextTransformation
Training pipeline will perform following transformation functions. * The text
as is--no change to case, punctuation, spelling, tense, and so on. * Convert
the category name to a dictionary lookup index and generate an embedding for
each index.
Corresponds to the JSON property text
23452 23453 23454 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 23452 def text @text end |
#timestamp ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaTrainingjobDefinitionSeq2SeqPlusForecastingInputsTransformationTimestampTransformation
Training pipeline will perform following transformation functions. * Apply the
transformation functions for Numerical columns. * Determine the year, month,
day,and weekday. Treat each value from the timestamp as a Categorical column. *
Invalid numerical values (for example, values that fall outside of a typical
timestamp range, or are extreme values) receive no special treatment and are
not removed.
Corresponds to the JSON property timestamp
23462 23463 23464 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 23462 def @timestamp end |
Instance Method Details
#update!(**args) ⇒ Object
Update properties of this object
23469 23470 23471 23472 23473 23474 23475 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 23469 def update!(**args) @auto = args[:auto] if args.key?(:auto) @categorical = args[:categorical] if args.key?(:categorical) @numeric = args[:numeric] if args.key?(:numeric) @text = args[:text] if args.key?(:text) @timestamp = args[:timestamp] if args.key?(:timestamp) end |