Class: Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaModelevaluationMetricsClassificationEvaluationMetricsConfidenceMetrics
- Inherits:
-
Object
- Object
- Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaModelevaluationMetricsClassificationEvaluationMetricsConfidenceMetrics
- Includes:
- Core::Hashable, Core::JsonObjectSupport
- Defined in:
- lib/google/apis/aiplatform_v1/classes.rb,
lib/google/apis/aiplatform_v1/representations.rb,
lib/google/apis/aiplatform_v1/representations.rb
Instance Attribute Summary collapse
-
#confidence_threshold ⇒ Float
Metrics are computed with an assumption that the Model never returns predictions with score lower than this value.
-
#confusion_matrix ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaModelevaluationMetricsConfusionMatrix
Confusion matrix of the evaluation for this confidence_threshold.
-
#f1_score ⇒ Float
The harmonic mean of recall and precision.
-
#f1_score_at1 ⇒ Float
The harmonic mean of recallAt1 and precisionAt1.
-
#f1_score_macro ⇒ Float
Macro-averaged F1 Score.
-
#f1_score_micro ⇒ Float
Micro-averaged F1 Score.
-
#false_negative_count ⇒ Fixnum
The number of ground truth labels that are not matched by a Model created label.
-
#false_positive_count ⇒ Fixnum
The number of Model created labels that do not match a ground truth label.
-
#false_positive_rate ⇒ Float
False Positive Rate for the given confidence threshold.
-
#false_positive_rate_at1 ⇒ Float
The False Positive Rate when only considering the label that has the highest prediction score and not below the confidence threshold for each DataItem.
-
#max_predictions ⇒ Fixnum
Metrics are computed with an assumption that the Model always returns at most this many predictions (ordered by their score, descendingly), but they all still need to meet the
confidenceThreshold. -
#precision ⇒ Float
Precision for the given confidence threshold.
-
#precision_at1 ⇒ Float
The precision when only considering the label that has the highest prediction score and not below the confidence threshold for each DataItem.
-
#recall ⇒ Float
Recall (True Positive Rate) for the given confidence threshold.
-
#recall_at1 ⇒ Float
The Recall (True Positive Rate) when only considering the label that has the highest prediction score and not below the confidence threshold for each DataItem.
-
#true_negative_count ⇒ Fixnum
The number of labels that were not created by the Model, but if they would, they would not match a ground truth label.
-
#true_positive_count ⇒ Fixnum
The number of Model created labels that match a ground truth label.
Instance Method Summary collapse
-
#initialize(**args) ⇒ GoogleCloudAiplatformV1SchemaModelevaluationMetricsClassificationEvaluationMetricsConfidenceMetrics
constructor
A new instance of GoogleCloudAiplatformV1SchemaModelevaluationMetricsClassificationEvaluationMetricsConfidenceMetrics.
-
#update!(**args) ⇒ Object
Update properties of this object.
Constructor Details
#initialize(**args) ⇒ GoogleCloudAiplatformV1SchemaModelevaluationMetricsClassificationEvaluationMetricsConfidenceMetrics
Returns a new instance of GoogleCloudAiplatformV1SchemaModelevaluationMetricsClassificationEvaluationMetricsConfidenceMetrics.
19280 19281 19282 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 19280 def initialize(**args) update!(**args) end |
Instance Attribute Details
#confidence_threshold ⇒ Float
Metrics are computed with an assumption that the Model never returns
predictions with score lower than this value.
Corresponds to the JSON property confidenceThreshold
19189 19190 19191 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 19189 def confidence_threshold @confidence_threshold end |
#confusion_matrix ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaModelevaluationMetricsConfusionMatrix
Confusion matrix of the evaluation for this confidence_threshold.
Corresponds to the JSON property confusionMatrix
19194 19195 19196 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 19194 def confusion_matrix @confusion_matrix end |
#f1_score ⇒ Float
The harmonic mean of recall and precision. For summary metrics, it computes
the micro-averaged F1 score.
Corresponds to the JSON property f1Score
19200 19201 19202 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 19200 def f1_score @f1_score end |
#f1_score_at1 ⇒ Float
The harmonic mean of recallAt1 and precisionAt1.
Corresponds to the JSON property f1ScoreAt1
19205 19206 19207 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 19205 def f1_score_at1 @f1_score_at1 end |
#f1_score_macro ⇒ Float
Macro-averaged F1 Score.
Corresponds to the JSON property f1ScoreMacro
19210 19211 19212 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 19210 def f1_score_macro @f1_score_macro end |
#f1_score_micro ⇒ Float
Micro-averaged F1 Score.
Corresponds to the JSON property f1ScoreMicro
19215 19216 19217 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 19215 def f1_score_micro @f1_score_micro end |
#false_negative_count ⇒ Fixnum
The number of ground truth labels that are not matched by a Model created
label.
Corresponds to the JSON property falseNegativeCount
19221 19222 19223 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 19221 def false_negative_count @false_negative_count end |
#false_positive_count ⇒ Fixnum
The number of Model created labels that do not match a ground truth label.
Corresponds to the JSON property falsePositiveCount
19226 19227 19228 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 19226 def false_positive_count @false_positive_count end |
#false_positive_rate ⇒ Float
False Positive Rate for the given confidence threshold.
Corresponds to the JSON property falsePositiveRate
19231 19232 19233 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 19231 def false_positive_rate @false_positive_rate end |
#false_positive_rate_at1 ⇒ Float
The False Positive Rate when only considering the label that has the highest
prediction score and not below the confidence threshold for each DataItem.
Corresponds to the JSON property falsePositiveRateAt1
19237 19238 19239 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 19237 def false_positive_rate_at1 @false_positive_rate_at1 end |
#max_predictions ⇒ Fixnum
Metrics are computed with an assumption that the Model always returns at most
this many predictions (ordered by their score, descendingly), but they all
still need to meet the confidenceThreshold.
Corresponds to the JSON property maxPredictions
19244 19245 19246 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 19244 def max_predictions @max_predictions end |
#precision ⇒ Float
Precision for the given confidence threshold.
Corresponds to the JSON property precision
19249 19250 19251 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 19249 def precision @precision end |
#precision_at1 ⇒ Float
The precision when only considering the label that has the highest prediction
score and not below the confidence threshold for each DataItem.
Corresponds to the JSON property precisionAt1
19255 19256 19257 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 19255 def precision_at1 @precision_at1 end |
#recall ⇒ Float
Recall (True Positive Rate) for the given confidence threshold.
Corresponds to the JSON property recall
19260 19261 19262 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 19260 def recall @recall end |
#recall_at1 ⇒ Float
The Recall (True Positive Rate) when only considering the label that has the
highest prediction score and not below the confidence threshold for each
DataItem.
Corresponds to the JSON property recallAt1
19267 19268 19269 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 19267 def recall_at1 @recall_at1 end |
#true_negative_count ⇒ Fixnum
The number of labels that were not created by the Model, but if they would,
they would not match a ground truth label.
Corresponds to the JSON property trueNegativeCount
19273 19274 19275 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 19273 def true_negative_count @true_negative_count end |
#true_positive_count ⇒ Fixnum
The number of Model created labels that match a ground truth label.
Corresponds to the JSON property truePositiveCount
19278 19279 19280 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 19278 def true_positive_count @true_positive_count end |
Instance Method Details
#update!(**args) ⇒ Object
Update properties of this object
19285 19286 19287 19288 19289 19290 19291 19292 19293 19294 19295 19296 19297 19298 19299 19300 19301 19302 19303 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 19285 def update!(**args) @confidence_threshold = args[:confidence_threshold] if args.key?(:confidence_threshold) @confusion_matrix = args[:confusion_matrix] if args.key?(:confusion_matrix) @f1_score = args[:f1_score] if args.key?(:f1_score) @f1_score_at1 = args[:f1_score_at1] if args.key?(:f1_score_at1) @f1_score_macro = args[:f1_score_macro] if args.key?(:f1_score_macro) @f1_score_micro = args[:f1_score_micro] if args.key?(:f1_score_micro) @false_negative_count = args[:false_negative_count] if args.key?(:false_negative_count) @false_positive_count = args[:false_positive_count] if args.key?(:false_positive_count) @false_positive_rate = args[:false_positive_rate] if args.key?(:false_positive_rate) @false_positive_rate_at1 = args[:false_positive_rate_at1] if args.key?(:false_positive_rate_at1) @max_predictions = args[:max_predictions] if args.key?(:max_predictions) @precision = args[:precision] if args.key?(:precision) @precision_at1 = args[:precision_at1] if args.key?(:precision_at1) @recall = args[:recall] if args.key?(:recall) @recall_at1 = args[:recall_at1] if args.key?(:recall_at1) @true_negative_count = args[:true_negative_count] if args.key?(:true_negative_count) @true_positive_count = args[:true_positive_count] if args.key?(:true_positive_count) end |