Class: Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaTrainingjobDefinitionAutoMlForecastingInputs

Inherits:
Object
  • Object
show all
Includes:
Core::Hashable, Core::JsonObjectSupport
Defined in:
lib/google/apis/aiplatform_v1/classes.rb,
lib/google/apis/aiplatform_v1/representations.rb,
lib/google/apis/aiplatform_v1/representations.rb

Instance Attribute Summary collapse

Instance Method Summary collapse

Constructor Details

#initialize(**args) ⇒ GoogleCloudAiplatformV1SchemaTrainingjobDefinitionAutoMlForecastingInputs

Returns a new instance of GoogleCloudAiplatformV1SchemaTrainingjobDefinitionAutoMlForecastingInputs.



21969
21970
21971
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 21969

def initialize(**args)
   update!(**args)
end

Instance Attribute Details

#additional_experimentsArray<String>

Additional experiment flags for the time series forcasting training. Corresponds to the JSON property additionalExperiments

Returns:

  • (Array<String>)


21805
21806
21807
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 21805

def additional_experiments
  @additional_experiments
end

#available_at_forecast_columnsArray<String>

Names of columns that are available and provided when a forecast is requested. These columns contain information for the given entity (identified by the time_series_identifier_column column) that is known at forecast. For example, predicted weather for a specific day. Corresponds to the JSON property availableAtForecastColumns

Returns:

  • (Array<String>)


21813
21814
21815
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 21813

def available_at_forecast_columns
  @available_at_forecast_columns
end

#context_windowFixnum

The amount of time into the past training and prediction data is used for model training and prediction respectively. Expressed in number of units defined by the data_granularity field. Corresponds to the JSON property contextWindow

Returns:

  • (Fixnum)


21820
21821
21822
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 21820

def context_window
  @context_window
end

#data_granularityGoogle::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaTrainingjobDefinitionAutoMlForecastingInputsGranularity

A duration of time expressed in time granularity units. Corresponds to the JSON property dataGranularity



21825
21826
21827
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 21825

def data_granularity
  @data_granularity
end

#enable_probabilistic_inferenceBoolean Also known as: enable_probabilistic_inference?

If probabilistic inference is enabled, the model will fit a distribution that captures the uncertainty of a prediction. At inference time, the predictive distribution is used to make a point prediction that minimizes the optimization objective. For example, the mean of a predictive distribution is the point prediction that minimizes RMSE loss. If quantiles are specified, then the quantiles of the distribution are also returned. The optimization objective cannot be minimize-quantile-loss. Corresponds to the JSON property enableProbabilisticInference

Returns:

  • (Boolean)


21836
21837
21838
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 21836

def enable_probabilistic_inference
  @enable_probabilistic_inference
end

#export_evaluated_data_items_configGoogle::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaTrainingjobDefinitionExportEvaluatedDataItemsConfig

Configuration for exporting test set predictions to a BigQuery table. Corresponds to the JSON property exportEvaluatedDataItemsConfig



21842
21843
21844
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 21842

def export_evaluated_data_items_config
  @export_evaluated_data_items_config
end

#forecast_horizonFixnum

The amount of time into the future for which forecasted values for the target are returned. Expressed in number of units defined by the data_granularity field. Corresponds to the JSON property forecastHorizon

Returns:

  • (Fixnum)


21849
21850
21851
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 21849

def forecast_horizon
  @forecast_horizon
end

#hierarchy_configGoogle::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaTrainingjobDefinitionHierarchyConfig

Configuration that defines the hierarchical relationship of time series and parameters for hierarchical forecasting strategies. Corresponds to the JSON property hierarchyConfig



21855
21856
21857
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 21855

def hierarchy_config
  @hierarchy_config
end

#holiday_regionsArray<String>

The geographical region based on which the holiday effect is applied in modeling by adding holiday categorical array feature that include all holidays matching the date. This option only allowed when data_granularity is day. By default, holiday effect modeling is disabled. To turn it on, specify the holiday region using this option. Corresponds to the JSON property holidayRegions

Returns:

  • (Array<String>)


21864
21865
21866
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 21864

def holiday_regions
  @holiday_regions
end

#optimization_objectiveString

Objective function the model is optimizing towards. The training process creates a model that optimizes the value of the objective function over the validation set. The supported optimization objectives: * "minimize-rmse" ( default) - Minimize root-mean-squared error (RMSE). * "minimize-mae" - Minimize mean-absolute error (MAE). * "minimize-rmsle" - Minimize root-mean- squared log error (RMSLE). * "minimize-rmspe" - Minimize root-mean-squared percentage error (RMSPE). * "minimize-wape-mae" - Minimize the combination of weighted absolute percentage error (WAPE) and mean-absolute-error (MAE). * " minimize-quantile-loss" - Minimize the quantile loss at the quantiles defined in quantiles. * "minimize-mape" - Minimize the mean absolute percentage error. Corresponds to the JSON property optimizationObjective

Returns:

  • (String)


21879
21880
21881
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 21879

def optimization_objective
  @optimization_objective
end

#quantilesArray<Float>

Quantiles to use for minimize-quantile-loss optimization_objective, or for probabilistic inference. Up to 5 quantiles are allowed of values between 0 and 1, exclusive. Required if the value of optimization_objective is minimize- quantile-loss. Represents the percent quantiles to use for that objective. Quantiles must be unique. Corresponds to the JSON property quantiles

Returns:

  • (Array<Float>)


21888
21889
21890
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 21888

def quantiles
  @quantiles
end

#target_columnString

The name of the column that the Model is to predict values for. This column must be unavailable at forecast. Corresponds to the JSON property targetColumn

Returns:

  • (String)


21894
21895
21896
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 21894

def target_column
  @target_column
end

#time_columnString

The name of the column that identifies time order in the time series. This column must be available at forecast. Corresponds to the JSON property timeColumn

Returns:

  • (String)


21900
21901
21902
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 21900

def time_column
  @time_column
end

#time_series_attribute_columnsArray<String>

Column names that should be used as attribute columns. The value of these columns does not vary as a function of time. For example, store ID or item color. Corresponds to the JSON property timeSeriesAttributeColumns

Returns:

  • (Array<String>)


21907
21908
21909
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 21907

def time_series_attribute_columns
  @time_series_attribute_columns
end

#time_series_identifier_columnString

The name of the column that identifies the time series. Corresponds to the JSON property timeSeriesIdentifierColumn

Returns:

  • (String)


21912
21913
21914
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 21912

def time_series_identifier_column
  @time_series_identifier_column
end

#train_budget_milli_node_hoursFixnum

Required. The train budget of creating this model, expressed in milli node hours i.e. 1,000 value in this field means 1 node hour. The training cost of the model will not exceed this budget. The final cost will be attempted to be close to the budget, though may end up being (even) noticeably smaller - at the backend's discretion. This especially may happen when further model training ceases to provide any improvements. If the budget is set to a value known to be insufficient to train a model for the given dataset, the training won't be attempted and will error. The train budget must be between 1,000 and 72,000 milli node hours, inclusive. Corresponds to the JSON property trainBudgetMilliNodeHours

Returns:

  • (Fixnum)


21925
21926
21927
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 21925

def train_budget_milli_node_hours
  @train_budget_milli_node_hours
end

#transformationsArray<Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaTrainingjobDefinitionAutoMlForecastingInputsTransformation>

Each transformation will apply transform function to given input column. And the result will be used for training. When creating transformation for BigQuery Struct column, the column should be flattened using "." as the delimiter. Corresponds to the JSON property transformations



21933
21934
21935
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 21933

def transformations
  @transformations
end

#unavailable_at_forecast_columnsArray<String>

Names of columns that are unavailable when a forecast is requested. This column contains information for the given entity (identified by the time_series_identifier_column) that is unknown before the forecast For example, actual weather on a given day. Corresponds to the JSON property unavailableAtForecastColumns

Returns:

  • (Array<String>)


21941
21942
21943
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 21941

def unavailable_at_forecast_columns
  @unavailable_at_forecast_columns
end

#validation_optionsString

Validation options for the data validation component. The available options are: * "fail-pipeline" - default, will validate against the validation and fail the pipeline if it fails. * "ignore-validation" - ignore the results of the validation and continue Corresponds to the JSON property validationOptions

Returns:

  • (String)


21949
21950
21951
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 21949

def validation_options
  @validation_options
end

#weight_columnString

Column name that should be used as the weight column. Higher values in this column give more importance to the row during model training. The column must have numeric values between 0 and 10000 inclusively; 0 means the row is ignored for training. If weight column field is not set, then all rows are assumed to have equal weight of 1. Corresponds to the JSON property weightColumn

Returns:

  • (String)


21958
21959
21960
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 21958

def weight_column
  @weight_column
end

#window_configGoogle::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaTrainingjobDefinitionWindowConfig

Config that contains the strategy used to generate sliding windows in time series training. A window is a series of rows that comprise the context up to the time of prediction, and the horizon following. The corresponding row for each window marks the start of the forecast horizon. Each window is used as an input example for training/evaluation. Corresponds to the JSON property windowConfig



21967
21968
21969
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 21967

def window_config
  @window_config
end

Instance Method Details

#update!(**args) ⇒ Object

Update properties of this object



21974
21975
21976
21977
21978
21979
21980
21981
21982
21983
21984
21985
21986
21987
21988
21989
21990
21991
21992
21993
21994
21995
21996
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 21974

def update!(**args)
  @additional_experiments = args[:additional_experiments] if args.key?(:additional_experiments)
  @available_at_forecast_columns = args[:available_at_forecast_columns] if args.key?(:available_at_forecast_columns)
  @context_window = args[:context_window] if args.key?(:context_window)
  @data_granularity = args[:data_granularity] if args.key?(:data_granularity)
  @enable_probabilistic_inference = args[:enable_probabilistic_inference] if args.key?(:enable_probabilistic_inference)
  @export_evaluated_data_items_config = args[:export_evaluated_data_items_config] if args.key?(:export_evaluated_data_items_config)
  @forecast_horizon = args[:forecast_horizon] if args.key?(:forecast_horizon)
  @hierarchy_config = args[:hierarchy_config] if args.key?(:hierarchy_config)
  @holiday_regions = args[:holiday_regions] if args.key?(:holiday_regions)
  @optimization_objective = args[:optimization_objective] if args.key?(:optimization_objective)
  @quantiles = args[:quantiles] if args.key?(:quantiles)
  @target_column = args[:target_column] if args.key?(:target_column)
  @time_column = args[:time_column] if args.key?(:time_column)
  @time_series_attribute_columns = args[:time_series_attribute_columns] if args.key?(:time_series_attribute_columns)
  @time_series_identifier_column = args[:time_series_identifier_column] if args.key?(:time_series_identifier_column)
  @train_budget_milli_node_hours = args[:train_budget_milli_node_hours] if args.key?(:train_budget_milli_node_hours)
  @transformations = args[:transformations] if args.key?(:transformations)
  @unavailable_at_forecast_columns = args[:unavailable_at_forecast_columns] if args.key?(:unavailable_at_forecast_columns)
  @validation_options = args[:validation_options] if args.key?(:validation_options)
  @weight_column = args[:weight_column] if args.key?(:weight_column)
  @window_config = args[:window_config] if args.key?(:window_config)
end