Class: Google::Apis::AiplatformV1::GoogleCloudAiplatformV1IntegratedGradientsAttribution

Inherits:
Object
  • Object
show all
Includes:
Core::Hashable, Core::JsonObjectSupport
Defined in:
lib/google/apis/aiplatform_v1/classes.rb,
lib/google/apis/aiplatform_v1/representations.rb,
lib/google/apis/aiplatform_v1/representations.rb

Overview

An attribution method that computes the Aumann-Shapley value taking advantage of the model's fully differentiable structure. Refer to this paper for more details: https://arxiv.org/abs/1703.01365

Instance Attribute Summary collapse

Instance Method Summary collapse

Constructor Details

#initialize(**args) ⇒ GoogleCloudAiplatformV1IntegratedGradientsAttribution

Returns a new instance of GoogleCloudAiplatformV1IntegratedGradientsAttribution.



11129
11130
11131
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 11129

def initialize(**args)
   update!(**args)
end

Instance Attribute Details

#blur_baseline_configGoogle::Apis::AiplatformV1::GoogleCloudAiplatformV1BlurBaselineConfig

Config for blur baseline. When enabled, a linear path from the maximally blurred image to the input image is created. Using a blurred baseline instead of zero (black image) is motivated by the BlurIG approach explained here: https://arxiv.org/abs/2004.03383 Corresponds to the JSON property blurBaselineConfig



11111
11112
11113
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 11111

def blur_baseline_config
  @blur_baseline_config
end

#smooth_grad_configGoogle::Apis::AiplatformV1::GoogleCloudAiplatformV1SmoothGradConfig

Config for SmoothGrad approximation of gradients. When enabled, the gradients are approximated by averaging the gradients from noisy samples in the vicinity of the inputs. Adding noise can help improve the computed gradients. Refer to this paper for more details: https://arxiv.org/pdf/1706.03825.pdf Corresponds to the JSON property smoothGradConfig



11119
11120
11121
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 11119

def smooth_grad_config
  @smooth_grad_config
end

#step_countFixnum

Required. The number of steps for approximating the path integral. A good value to start is 50 and gradually increase until the sum to diff property is within the desired error range. Valid range of its value is [1, 100], inclusively. Corresponds to the JSON property stepCount

Returns:

  • (Fixnum)


11127
11128
11129
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 11127

def step_count
  @step_count
end

Instance Method Details

#update!(**args) ⇒ Object

Update properties of this object



11134
11135
11136
11137
11138
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 11134

def update!(**args)
  @blur_baseline_config = args[:blur_baseline_config] if args.key?(:blur_baseline_config)
  @smooth_grad_config = args[:smooth_grad_config] if args.key?(:smooth_grad_config)
  @step_count = args[:step_count] if args.key?(:step_count)
end