Class: Google::Apis::AiplatformV1::GoogleCloudAiplatformV1ModelDeploymentMonitoringJob
- Inherits:
-
Object
- Object
- Google::Apis::AiplatformV1::GoogleCloudAiplatformV1ModelDeploymentMonitoringJob
- Includes:
- Core::Hashable, Core::JsonObjectSupport
- Defined in:
- lib/google/apis/aiplatform_v1/classes.rb,
lib/google/apis/aiplatform_v1/representations.rb,
lib/google/apis/aiplatform_v1/representations.rb
Overview
Represents a job that runs periodically to monitor the deployed models in an endpoint. It will analyze the logged training & prediction data to detect any abnormal behaviors.
Instance Attribute Summary collapse
-
#analysis_instance_schema_uri ⇒ String
YAML schema file uri describing the format of a single instance that you want Tensorflow Data Validation (TFDV) to analyze.
-
#bigquery_tables ⇒ Array<Google::Apis::AiplatformV1::GoogleCloudAiplatformV1ModelDeploymentMonitoringBigQueryTable>
Output only.
-
#create_time ⇒ String
Output only.
-
#display_name ⇒ String
Required.
-
#enable_monitoring_pipeline_logs ⇒ Boolean
(also: #enable_monitoring_pipeline_logs?)
If true, the scheduled monitoring pipeline logs are sent to Google Cloud Logging, including pipeline status and anomalies detected.
-
#encryption_spec ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1EncryptionSpec
Represents a customer-managed encryption key spec that can be applied to a top- level resource.
-
#endpoint ⇒ String
Required.
-
#error ⇒ Google::Apis::AiplatformV1::GoogleRpcStatus
The
Statustype defines a logical error model that is suitable for different programming environments, including REST APIs and RPC APIs. -
#labels ⇒ Hash<String,String>
The labels with user-defined metadata to organize your ModelDeploymentMonitoringJob.
-
#latest_monitoring_pipeline_metadata ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1ModelDeploymentMonitoringJobLatestMonitoringPipelineMetadata
All metadata of most recent monitoring pipelines.
-
#log_ttl ⇒ String
The TTL of BigQuery tables in user projects which stores logs.
-
#logging_sampling_strategy ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SamplingStrategy
Sampling Strategy for logging, can be for both training and prediction dataset.
-
#model_deployment_monitoring_objective_configs ⇒ Array<Google::Apis::AiplatformV1::GoogleCloudAiplatformV1ModelDeploymentMonitoringObjectiveConfig>
Required.
-
#model_deployment_monitoring_schedule_config ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1ModelDeploymentMonitoringScheduleConfig
The config for scheduling monitoring job.
-
#model_monitoring_alert_config ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1ModelMonitoringAlertConfig
The alert config for model monitoring.
-
#name ⇒ String
Output only.
-
#next_schedule_time ⇒ String
Output only.
-
#predict_instance_schema_uri ⇒ String
YAML schema file uri describing the format of a single instance, which are given to format this Endpoint's prediction (and explanation).
-
#sample_predict_instance ⇒ Object
Sample Predict instance, same format as PredictRequest.instances, this can be set as a replacement of ModelDeploymentMonitoringJob.
-
#schedule_state ⇒ String
Output only.
-
#state ⇒ String
Output only.
-
#stats_anomalies_base_directory ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1GcsDestination
The Google Cloud Storage location where the output is to be written to.
-
#update_time ⇒ String
Output only.
Instance Method Summary collapse
-
#initialize(**args) ⇒ GoogleCloudAiplatformV1ModelDeploymentMonitoringJob
constructor
A new instance of GoogleCloudAiplatformV1ModelDeploymentMonitoringJob.
-
#update!(**args) ⇒ Object
Update properties of this object.
Constructor Details
#initialize(**args) ⇒ GoogleCloudAiplatformV1ModelDeploymentMonitoringJob
Returns a new instance of GoogleCloudAiplatformV1ModelDeploymentMonitoringJob.
14084 14085 14086 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 14084 def initialize(**args) update!(**args) end |
Instance Attribute Details
#analysis_instance_schema_uri ⇒ String
YAML schema file uri describing the format of a single instance that you want
Tensorflow Data Validation (TFDV) to analyze. If this field is empty, all the
feature data types are inferred from predict_instance_schema_uri, meaning that
TFDV will use the data in the exact format(data type) as prediction request/
response. If there are any data type differences between predict instance and
TFDV instance, this field can be used to override the schema. For models
trained with Vertex AI, this field must be set as all the fields in predict
instance formatted as string.
Corresponds to the JSON property analysisInstanceSchemaUri
13939 13940 13941 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 13939 def analysis_instance_schema_uri @analysis_instance_schema_uri end |
#bigquery_tables ⇒ Array<Google::Apis::AiplatformV1::GoogleCloudAiplatformV1ModelDeploymentMonitoringBigQueryTable>
Output only. The created bigquery tables for the job under customer project.
Customer could do their own query & analysis. There could be 4 log tables in
maximum: 1. Training data logging predict request/response 2. Serving data
logging predict request/response
Corresponds to the JSON property bigqueryTables
13947 13948 13949 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 13947 def bigquery_tables @bigquery_tables end |
#create_time ⇒ String
Output only. Timestamp when this ModelDeploymentMonitoringJob was created.
Corresponds to the JSON property createTime
13952 13953 13954 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 13952 def create_time @create_time end |
#display_name ⇒ String
Required. The user-defined name of the ModelDeploymentMonitoringJob. The name
can be up to 128 characters long and can consist of any UTF-8 characters.
Display name of a ModelDeploymentMonitoringJob.
Corresponds to the JSON property displayName
13959 13960 13961 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 13959 def display_name @display_name end |
#enable_monitoring_pipeline_logs ⇒ Boolean Also known as: enable_monitoring_pipeline_logs?
If true, the scheduled monitoring pipeline logs are sent to Google Cloud
Logging, including pipeline status and anomalies detected. Please note the
logs incur cost, which are subject to Cloud Logging pricing.
Corresponds to the JSON property enableMonitoringPipelineLogs
13967 13968 13969 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 13967 def enable_monitoring_pipeline_logs @enable_monitoring_pipeline_logs end |
#encryption_spec ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1EncryptionSpec
Represents a customer-managed encryption key spec that can be applied to a top-
level resource.
Corresponds to the JSON property encryptionSpec
13974 13975 13976 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 13974 def encryption_spec @encryption_spec end |
#endpoint ⇒ String
Required. Endpoint resource name. Format: projects/project/locations/
location/endpoints/endpoint`
Corresponds to the JSON propertyendpoint`
13980 13981 13982 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 13980 def endpoint @endpoint end |
#error ⇒ Google::Apis::AiplatformV1::GoogleRpcStatus
The Status type defines a logical error model that is suitable for different
programming environments, including REST APIs and RPC APIs. It is used by
gRPC. Each Status message contains three pieces of
data: error code, error message, and error details. You can find out more
about this error model and how to work with it in the API Design Guide.
Corresponds to the JSON property error
13990 13991 13992 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 13990 def error @error end |
#labels ⇒ Hash<String,String>
The labels with user-defined metadata to organize your
ModelDeploymentMonitoringJob. Label keys and values can be no longer than 64
characters (Unicode codepoints), can only contain lowercase letters, numeric
characters, underscores and dashes. International characters are allowed. See
https://goo.gl/xmQnxf for more information and examples of labels.
Corresponds to the JSON property labels
13999 14000 14001 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 13999 def labels @labels end |
#latest_monitoring_pipeline_metadata ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1ModelDeploymentMonitoringJobLatestMonitoringPipelineMetadata
All metadata of most recent monitoring pipelines.
Corresponds to the JSON property latestMonitoringPipelineMetadata
14004 14005 14006 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 14004 def @latest_monitoring_pipeline_metadata end |
#log_ttl ⇒ String
The TTL of BigQuery tables in user projects which stores logs. A day is the
basic unit of the TTL and we take the ceil of TTL/86400(a day). e.g. second:
3600 indicates ttl = 1 day.
Corresponds to the JSON property logTtl
14011 14012 14013 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 14011 def log_ttl @log_ttl end |
#logging_sampling_strategy ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SamplingStrategy
Sampling Strategy for logging, can be for both training and prediction dataset.
Corresponds to the JSON property loggingSamplingStrategy
14016 14017 14018 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 14016 def logging_sampling_strategy @logging_sampling_strategy end |
#model_deployment_monitoring_objective_configs ⇒ Array<Google::Apis::AiplatformV1::GoogleCloudAiplatformV1ModelDeploymentMonitoringObjectiveConfig>
Required. The config for monitoring objectives. This is a per DeployedModel
config. Each DeployedModel needs to be configured separately.
Corresponds to the JSON property modelDeploymentMonitoringObjectiveConfigs
14022 14023 14024 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 14022 def model_deployment_monitoring_objective_configs @model_deployment_monitoring_objective_configs end |
#model_deployment_monitoring_schedule_config ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1ModelDeploymentMonitoringScheduleConfig
The config for scheduling monitoring job.
Corresponds to the JSON property modelDeploymentMonitoringScheduleConfig
14027 14028 14029 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 14027 def model_deployment_monitoring_schedule_config @model_deployment_monitoring_schedule_config end |
#model_monitoring_alert_config ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1ModelMonitoringAlertConfig
The alert config for model monitoring.
Corresponds to the JSON property modelMonitoringAlertConfig
14032 14033 14034 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 14032 def model_monitoring_alert_config @model_monitoring_alert_config end |
#name ⇒ String
Output only. Resource name of a ModelDeploymentMonitoringJob.
Corresponds to the JSON property name
14037 14038 14039 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 14037 def name @name end |
#next_schedule_time ⇒ String
Output only. Timestamp when this monitoring pipeline will be scheduled to run
for the next round.
Corresponds to the JSON property nextScheduleTime
14043 14044 14045 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 14043 def next_schedule_time @next_schedule_time end |
#predict_instance_schema_uri ⇒ String
YAML schema file uri describing the format of a single instance, which are
given to format this Endpoint's prediction (and explanation). If not set, we
will generate predict schema from collected predict requests.
Corresponds to the JSON property predictInstanceSchemaUri
14050 14051 14052 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 14050 def predict_instance_schema_uri @predict_instance_schema_uri end |
#sample_predict_instance ⇒ Object
Sample Predict instance, same format as PredictRequest.instances, this can be
set as a replacement of ModelDeploymentMonitoringJob.
predict_instance_schema_uri. If not set, we will generate predict schema from
collected predict requests.
Corresponds to the JSON property samplePredictInstance
14058 14059 14060 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 14058 def sample_predict_instance @sample_predict_instance end |
#schedule_state ⇒ String
Output only. Schedule state when the monitoring job is in Running state.
Corresponds to the JSON property scheduleState
14063 14064 14065 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 14063 def schedule_state @schedule_state end |
#state ⇒ String
Output only. The detailed state of the monitoring job. When the job is still
creating, the state will be 'PENDING'. Once the job is successfully created,
the state will be 'RUNNING'. Pause the job, the state will be 'PAUSED'. Resume
the job, the state will return to 'RUNNING'.
Corresponds to the JSON property state
14071 14072 14073 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 14071 def state @state end |
#stats_anomalies_base_directory ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1GcsDestination
The Google Cloud Storage location where the output is to be written to.
Corresponds to the JSON property statsAnomaliesBaseDirectory
14076 14077 14078 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 14076 def stats_anomalies_base_directory @stats_anomalies_base_directory end |
#update_time ⇒ String
Output only. Timestamp when this ModelDeploymentMonitoringJob was updated most
recently.
Corresponds to the JSON property updateTime
14082 14083 14084 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 14082 def update_time @update_time end |
Instance Method Details
#update!(**args) ⇒ Object
Update properties of this object
14089 14090 14091 14092 14093 14094 14095 14096 14097 14098 14099 14100 14101 14102 14103 14104 14105 14106 14107 14108 14109 14110 14111 14112 14113 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 14089 def update!(**args) @analysis_instance_schema_uri = args[:analysis_instance_schema_uri] if args.key?(:analysis_instance_schema_uri) @bigquery_tables = args[:bigquery_tables] if args.key?(:bigquery_tables) @create_time = args[:create_time] if args.key?(:create_time) @display_name = args[:display_name] if args.key?(:display_name) @enable_monitoring_pipeline_logs = args[:enable_monitoring_pipeline_logs] if args.key?(:enable_monitoring_pipeline_logs) @encryption_spec = args[:encryption_spec] if args.key?(:encryption_spec) @endpoint = args[:endpoint] if args.key?(:endpoint) @error = args[:error] if args.key?(:error) @labels = args[:labels] if args.key?(:labels) @latest_monitoring_pipeline_metadata = args[:latest_monitoring_pipeline_metadata] if args.key?(:latest_monitoring_pipeline_metadata) @log_ttl = args[:log_ttl] if args.key?(:log_ttl) @logging_sampling_strategy = args[:logging_sampling_strategy] if args.key?(:logging_sampling_strategy) @model_deployment_monitoring_objective_configs = args[:model_deployment_monitoring_objective_configs] if args.key?(:model_deployment_monitoring_objective_configs) @model_deployment_monitoring_schedule_config = args[:model_deployment_monitoring_schedule_config] if args.key?(:model_deployment_monitoring_schedule_config) @model_monitoring_alert_config = args[:model_monitoring_alert_config] if args.key?(:model_monitoring_alert_config) @name = args[:name] if args.key?(:name) @next_schedule_time = args[:next_schedule_time] if args.key?(:next_schedule_time) @predict_instance_schema_uri = args[:predict_instance_schema_uri] if args.key?(:predict_instance_schema_uri) @sample_predict_instance = args[:sample_predict_instance] if args.key?(:sample_predict_instance) @schedule_state = args[:schedule_state] if args.key?(:schedule_state) @state = args[:state] if args.key?(:state) @stats_anomalies_base_directory = args[:stats_anomalies_base_directory] if args.key?(:stats_anomalies_base_directory) @update_time = args[:update_time] if args.key?(:update_time) end |